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Abstract : This paper presents a fault diagnosis and fault-tolerant control algorithm, which can be used for a class of multi-input

multi-output (MIMO) nonlinear state systems. First, a state estimator is proposed, which is able to detect fault occurrence, by u-

sing a residual signal. Second, when the state is at an abnormal condition, the fault-tolerant control will be triggered to minimize

the impact of the fault occurrence. This fault-tolerant control is designed by using a robust controller (original controller) , and an

on-line approximator to capture a nonlinear function that indicates the fault occurrence. The detailed analysis is given for the pro-

posed fault accommodation control.
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1 Introduction

Over the past two decades, there has been an
increasing demand for the control systems to be safer
and more reliable. Therefore, fault diagnosis ( or
fault monitoring ) has been becoming an important
topic in control research and practical applications.
Fault diagnosis has been studied intensively. For ex-
ample, Visinsky et al. "'/ present an expert system
model for handling fault detection. The model based
on fault diagnosis has been widely accepted in com-
puter control due to the availability of input/output
data "',

diagnosis can be found in the literature "

Some results regarding model-based fault
) For ex-
ample, Wang and Daley "* present an adaptive esti-
mator algorithm for diagnosing actuator faults; Wun-
nenberg and Frank '*' propose a mathematical model
to diagnose incipient faults. However, model-based
fault detection algorithms depend on the assumption
that an accurate mathematical model is available. In
real situations, that may not be practical, for some-
times it is quite difficult to develop an accurate mod-
el. By introducing neural networks, an adaptive fault
diagnosis algorithm has been presented in the work
of [5, 6], while the paper applies a neural network

to approximate the unknown fault. Moreover, in

many practical applications, it is necessary not only
to diagnose but also to accommodate any faults as
quickly as possible, this is called fault-tolerant con-
trol. Several types of fault-tolerant control have been
reported. For example, Visinsky et al. ''! present an
expert rule-based system for achieving fault-tolerant
control; Tao et al. |”/ present an adaptive method for
accommodating actuator faults; Polycarpou and Hel-
mic '” present a fault diagnosis and fault-tolerant
control approach; Diao and Passino "* develop a sta-
ble adaptive controller to implement fault-tolerant
engine control; Zhang et al."''" present an informa-
tion-based fault-tolerant controller and discuss the
detectability and stability issues of it. Unfortunately,

[8-10]

these results are based on single-input single

output ( SISO ) systems. Research on multi-input
multi-output (MIMO) systems have been carried out

121 devel-

in recent years. For example, Chen et al.
op an adaptive actuator failure compensator for a
class of linear multivariable systems; Farrell et al.'""
present a learning method for fault accommodation
control; and Visinsky et al. " present a dynamic
fault accommodation control, which is applied to ro-

botic systems. However, stability analysis has not

11, 13 14]

been addressed ' ! Furthermore,, Huang et al. '
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propose an information-based fault-tolerant control
approach, which can be used in the presence of state
and sensor failures, while Polycarpou "' proposes a
fault accommodation control scheme for a class of
MIMO nonlinear systems. However, the detectability
and multi-state stability issues are not addressed in
the work of Huang et al. " while the work of
Polycarpou '"*' hinges on the assumption that the o-
riginal controller ( without considering faults ) is
based on a nominal model that is known a priori.
The latest developments in MIMO systems can be

118 " Jin et al. " design a

found in the literature '
passive fault fault-tolerant controller for a class of
MIMO linear systems. However, their work cannot
be applied to nonlinear systems. Nasiri et al. '™
present a passive actuator fault tolerant controller for
a class of MIMO nonlinear systems. However, they
do not consider the fault diagnosis, and this may re-
sult in the waste of control energy. Mbarek and
Bouzrara ""*' propose a fault-tolerant controller based
on multiple models, which are approximated by a set
of linear, time-invariant and causal sub-models.
However, this approach cannot handle uncertainties
that are unstructured but bounded. In addition, the
detectability is not addressed in the work of Mbarek
and Bouzrara '

The present paper investigates a class of uncer-
tain MIMO nonlinear systems and designs a fault di-
agnosis and fault-tolerant control scheme. Here, it is
assumed that the faults are unknown. Thus, a fault
diagnosis algorithm based on a nonlinear observer, is
developed. It is expected that the observed states will
indicate significant deviation from the nominal values
of the observer. The present fault accommodation
scheme consists of an original controller, and a
reconfigured controller that is used after fault detec-
tion. The present paper makes three main contribu-
tions. First, the original controller is robust against
modeling uncertainties. This will guarantee satisfac-
tory tracking performance (with a constant bound)
in a normal operating mode. Second, the detectabili-

ty and stability of the fault-tolerant control algorithm

are addressed in detail. Third, the matching condi-
tion ") is removed completely. Finally, simulation
results are obtained to demonstrate goods perform-
ance of the proposed fault diagnosis and fault-toler-
ant control scheme.

The present paper is organized into six sections.
Section 2 gives the problem background and system
description. Fault diagnosis and detectability analysis
are discussed in Section 3. Fault-tolerant control and
stability analysis while considering multi-states are
given in Section 4. A case study is given in Section 5.

The concluding comments are presented in Section 6.

2 Backgrounds
This section presents the systems considered and
the objectives of the present work. The MIMO non-

linear system is described by,

xfm = f;.(x,t) + Zgzj(x’t>u,'

Jj=1

_ T ’ (1)
+ ni('xat) +Bi(t )gl(x)

yi, = xi
where
X = dr /i
x = I:xl ,...xinl—l) ’x2,.nx;ﬂz-l)“.xm“.x,("nm—])]T
n, +n, +... +n, =n,
represent the system state, u;,j=1,2,...,m, re-

present the control signals, y,,i = 1,2,... ,m, define
the system outputs, f;,g;,i,j = 1,2,...,m, represent
the known nonlinear functions, n,(x,t) ,i=1,2,...,
m, define the uncertain terms, and B,(t — T){.(x),
t=1,2,...,m, denote the function of fault occur-
rence.

Equation (1) can be re-arranged into the fol-
lowing form

x" = F(x,t) +G(x,0)u +n(x,t) +

B(t - T){(x), (2)
where
= [alm ke ]

F(x’t> = [fl(xyt) ’fz(x’t) ""’fm(x9t ):IT’
gn(x,t) g1, (2,1)
G(x,t) = :

b

gml(x’t) gmm(xyt)
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u = [ul,uz,...,uer,

n(x,0) = [n,(x,0) ,my(x,0) oy, (x,0) 17,

B(t - T)=diag{B,(t - T),B,(t = T),...,

B.(t-T)t,

{(w) = [41(x) ,0o(x) e nd, () 10

The proposed system can represent a class of
robotic systems; for example, mobile robots and n-

link robots (see Fig.1).

Fig. 1 Robotic systems: (a) r-link robot;
(b) mobile robot.

Each fault is modeled with a time profile,

1-e " time t =T

Alt-1)= 0 time t < T (3)

where 6, is a positive constant, which represents
a change rate of an actuator fault. It should be no-
ticed that in (1), B, represents whether the occur-
rence speed of a fault is fast or slow, while . (x) re-
presents what the fault features are.

The present work has two main objectives. The
first objective is to detect fault occurrence. The sec-
ond objective is to accommodate the detected fault
and maintain a stable closed-loop control.

Some assumptions are made now ;

Al) {(x) is required to be uniformly continu-
ous.

A2) G(x,t) is required to be inverstible.

A3) m,(x,t) is required to be bounded by a

continuous function n,(x,t) ; i.e.,
\m(x,t) ‘S:’h(x,t) (4)
3 Fault Diagnosis

The present section discusses the fault diagnosis

algorithm. First, an estimation model is designed.

Subsequently, based on this model, a threshold
bound is developed in order to generate a warning
signal.
From (2), a nonlinear estimation model is built
as
=AY+ F(x,t) + G(x,0)u, (5)

where x'" represents the estimated state,

56("—1) — .X("_l) _ -;C(n—])

represents the error state, and

A =diag{A,,Ay,...,A, } (A, > 0)

represents the gain matrix. Next, a residual sig-
nal is constructed. Utilizing (2) and (5), the fol-

lowing error dynamics can be developed:

W= Az + p(x,0) + Bt - T)(x).
(6)
For convenience, the notation x, = x'""" is in-
troduced. It follows that
x=—Ax + n(x,t) + B(t - T){(x). (7)

where x = [ %,,%,,...,%, ] . According to equa-
tion (3), no fault occurs when ¢ < T'. This implies
that

B(t-T){(x)=0, timet < T. (8)

Thus, each element x,(¢) of the residual vector
follows that

()= eMx(0) + [ My (e,0)dr, 1 < T.
0

Thus, an upper bound is obtained for each x "’

during [0, T) , that is,
w=e M1 5(0) 1+ [ e p(,dr (9)
0

Now, the following decision rule results:

When at least one element of the residual
| x,(t) | goes beyond the threshold value w, , a fault
has occurred.

The fault detection time can be denoted as,

Td:infuzn:lét”&i(t)|2wi}~ (10)

A theoretical analysis is necessary to ensure that
all faults are observable. The following theorem ad-
dressese the detectability of the fault detection, by
characterizing the faults that can be detected, and
shows that the fault will be detected before it goes to

infinity (i.e., the system becomes unstable).
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Theorem 3.1 ( Detectability Issue ) :
that there exists a time interval [ T,,T,] (T <T, <
T,) where | x,(T,) | <w, and a scalar M, > 0 ( the
range of M,;will be shown) such that at least one ele-
ment of the fault term B(t — T){(x) satisfies the fol-

Suppose

lowing condition ;

| B.(t = T),(x) | > M, +2n,(x,t), (11)
| x,(T,) | > w,.
Proof. Notice that in this case each component

Then, a fault is detected; i.e.,

of the estimation error equations satisfies,
%(1) =- )‘i;ﬂ'(t) +n(x,t) +B,(t - T){(x).
(12)

For any ¢+ > O (T, + ¢ <T,) , the solution of

(12) is

(T, +0) = e (1) [ e Ty () dr

[ e (r = g () d

Using the triangle inequality, it is obtained,
|5 (T, +0) 1= [ It

BT =T (x)dr| —e™ | x(T,) |

f,Ti e M g (x,7)dT

Since B,(t = T){,(x) is uniformly continuous,
there exists a time interval [ T,,T,] such that 8,(¢ —
T){,(x) retains the same sign for ¢t e [T,,T,] .

Hence, for everyt € [T,,T,] , we have
|5 (T, +0) 1= [Jreme
| B(7 = T),(x) | dr —e™ | x,(T,) | -
[1te 05 e mydr = [ e scro
| B(7 = T)(x) | dr | x,(T,) | -
f,T;”e*A’ T (x,7)dr.
Using (11), we have
|3 (T, o) 1= [ Be T e -
|2 (T) 1 =27 (1 =M -1 x(T) 1.
(13)
This  implies that if M, > 24,

i i
[ 1 = e (27T ]

then | x,(7,) | > w, This also implies that the fault

- 1 @, (note that | x,(T,) | <®w,),

is detected at the time ¢t = T,. Based on the above
lemma, if a fault occurs, it will be detected at time
T,.

Remark 3.1. If he uncertain term 7,(x,t) satis-
fying

| n(x,0) | <k, || x| +k, (14)

is known, the threshold will have

i
w,=e M 15 (0) 1 +h, [ 07 | x] dr+
0

*(1 e™). (15)

If the uncertain term 7,( x,¢) satisfies the simple
form,

| n,(x,t) | <k (16)

the threshold will be given by

i

- k
w=e 1 x,(0) | + /T(l —e M. (17)

The detectability can be further analyzed by u-

sing a similar procedure as in Theorem 3.1.

4 Fault Tolerant Control

This section designs and analyzes the developed
fault-tolerant controller. First, the original controller
of the system (1) without fault is presented and the
stability is discussed. Second, when a fault is pres-
ent, a corrective control signal is added to the origi-
nal controller, to achieve fault-tolerant control.
Third,

different states are discussed.

the closed-loop stability issues of the three

4.1 Original control before fault detection

The objective of controller design is to achieve
tracking control; i.e., following a desired reference
signal y,(t) € R . The errore;(¢) is expressed as e, =
Yi = Yai -
are designed;

Furthermore, the following filtered errors

d _
i = (E + k)" lel’

. d
322(*

ny-1
dt +k2) : €,

— —l
S/n - <7 km)n m >

where £k, ,... ,k, are the designed filter gains.
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According to the result of Slotine and Li "**' if
s;(t) = 0, this implies that their states e; will ap-
proach O asymptomatically. Therefore, it is reasona-
ble to use a filter error to represent the actual track-
ing error. Thus, the filtered system is given by,

S(t)=F(x,t) +G(x,t)u +v +n(x,t) +

B(t -T){(x), (18)

where ,

S(t) =[s,(1),s,(t) ,s5(t) s, (£)]"

v = [’Ul 3Uy s U3 4.0 3V, ] r

v; =~ yz(li"i) + k?i_léi + <”i - 1>k?i_2éi

oo+ (n, = Dk,

When there is no fault, equation (18) is given
by

S(t)=F(x,t) + G(x,t)u +v +7n(x,t).

(19)

It is suggested to use the following control ac-
tion:

u=6G"(x,0)[ - F(x,t) —v—-AS -

- 20
SelmCen 1357, =

where, A is the same as in (5) and £ is a posi-
tive constant. The application of (20) to (19) pro-

duces,

S() == AS = €)1 + 0.

(21)

Define the Lyapunov function V, =S"S . V along
(21) is given by,

V, =—25"AS - éPy(x,t) P’PSP*+

28" (x,1). (22)

Note that 2ab <&€a® + ¢ 'b*. Thus, we have

258"n(x,t) <2PSPPn(«x,t)P

<éPy(x,t) PPPSP*+ &7

Utilizing the above inequalities, (22) becomes
as

V,<=2A

where, A

(M) s [I*+e&r, (23)
(A) is the smallest eigenvalue of
é—*l
ZAmiu(A>

negative. This demonstrates that the tracking errors S

min

min

A . Thus, whenever || S| > , Vbecomes

are uniformly ultimately bounded (UUB). Further-
more, from (23), it follows that,
é':_l

7+
(A)

Vi(t) <
l( ) 2/\min

[VI(O) - m}e%mm(/&)t (24)

Thus, it follows that

‘f_l _ é:_] =2A i (M)t
Sngmuw+[“m) ORIV

min

é‘_——l
A (A (%)

lim |3 <

Therefore, we have the following stability re-
sult.

Theorem 4.1. ( Stability Issue In the Absence of
Fault) Suppose that the assumptions Al- A3 hold.
Apply the controller (20) to the system (1) without
fault occurrence. Then, the tracking errors S are
UUB, and S satisfy the property (25).

Remark 4.1. The guidelines for choosing the pa-
rameters in the theorem are given now. Increasing &
can help reduce the bound of ||S|| . However, if £ is
too large, it will lead to high-gain control, which is
not desirable in a closed-loop system. Therefore, in
a practical application, a trade-off has to be made
for achieving suitable transient performance and con-
trol action.

Suppose that a fault has occurred, but it has not
been detected. In this case, the fault may lead to
system instability since the corrective control is not
activated. To solve this problem, we will now con-
sider the system stability if a fault has occurred but
not detected under the original control scheme.

Theorem 4.2 ( Stability Issue Before Fault De-
tection) ; Assume that a fault occurs at T'. Then, for
t e [T,T,) , the robust controller (20) can ensure
that the tracking error s, is bounded.

Proof. For T +t € [T,T,) , the closed-loop

system becomes,
1 -
S(1) == AS = ¢ | n(X.0) | S+ m(a,0) +

B(t = T){(x).
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Each component of the closed-loop system is The triangle inequality follows that,
given by | (T +1) | = J;He-mw-f)
: 1 - )
s; == A, +(w,t) - ?f [ mCx,t) || s, + B.(r - TV (x,7)dr| -
Bt - T)¢ (x). e 3 (T) | -
Thus, we have f;”e"“”*' Dn(x,t)dr =
s(T+1)=e™s(T) +
. i | j;:ue—)u'(TH—r)
J’Tﬂe— i(T+t-7)
B(r = T){(x,7)d7 | -
1 _ -
[n,(x,7) —?§||7I(x,7) | 's; 1dr + | x(T) | - s (.(r) A (27)

J*;:_He_“(]'”—f)ﬁi(,’- — T)ét(x>d7
It follows that
| s(T+1) | <e™ 1 s(T) |+

T+t =Ai(T+i-7) [
J.T e [, +

*f I (e,7) II?
| j;ﬂe—)@(ﬁz—r)
B.(1 =T (x)dr] <e™ | s,(T) I

3[170}?’, {77 (7_) }fTH —Ai( T+t— T)d +
TE N ([

I's, | Jdr +

+

1 - 2
o€ sup Llatr) |7

T =Ai(T+t—
jrﬂﬁ) i(T+t-7) | s, | d’T +
| f;+ze—Ai(7‘+x—r)

Bt =T){(x)dr | <
e M1 s, (T) |+ Sﬁpu{

+

2,(7) | A
1 - 2
o€ sup L) |7

T =Ai(T+t—
jrﬂf? Ai( T+t T)lsil d’T+

| f;+ze—Ai(7‘+x—r)Bi(T - T)é’l(x)dT l.

where, Assumption A3) has been used. Recall-

(26)

the solution of «, for time¢ e [ T,T,) is,
Q_Ci( T+1)= e_/\[t;ﬂ‘( T) +

f;:+te—)\i(’l'+t—f)ni(x’t)d7_ +

[ e gz = T)g .

Since fort € [T, Td) the fault has not been de-

tected, this implies that | x,(7T +¢) | <w,and | x,(T)

| <w,.

get

It follows from (27) that,

| JA;:HeiM(THiT)B,j(T _ T)

{(x,7)dr| L, + S[LILPI ] {n, (1) iA]!
TE sLq

Substitute the above inequality into (26), to

| s(T+1) | <e™| s.( T) |+

s% (1)} A

2w+ 26 sup | la(r) 1]

T —Ai(T+t—
[ ey 1 dr,

[23]

According to B_G lemma , it follows that

Is;(T+t) ! <[Is,(T)1+2 S[L]Lp[}{’;]i(’l')})”l
Tel[T,T,;

AEICON T

—1

i

1
2w, Je Me2t SLTLP
+ m‘i] X

SL;p (n(r)iA

j et et sy | a(r) )]

(T+t-7)dr =
- -1
[l s,(T) 1+ 2Tes[zﬁgrd]{ni(7) FA] + 2w, ] %
e Mt sup (7)) |12 )+
Te[T,T;]

2 sup (1) IA] + @)
Te[T,T,]

[ 12
(A =€ swp L) 17)

BEICOR DR
Note thatt € [0,7, — T) . Thus, s,(T +t) is

(At
[1-e 2 Tes[u;{)m (28)
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bounded for T+t € [ T,T,) . This bound can be re-

duced by increasing the value A, .

4.2 Controller reconfiguration; fault-tolerant

control after fault is detected

Once a fault is detected, it is necessary to fur-
ther reconfigure the controller so that the fault effects
can be reduced significantly. How to reconfigure the
controller and the the stability issues when using the
proposed controller are addressed now.

After the occurrence of a fault, the system e-
quation (19) becomes,

S(t)=F(x,t) + G(x,t)u +v +n(x,t) +

B(t -T) (%), (29)
where ,
B(t-T)=1-0(t-T), t=T, (30)

with @(1 - T) = diagle ™" 0" .

e—H"(t—T) } .

*

If {(x) is not available, it implies that B(¢ —
T){ is also unknown. In this situation, a linearly pa-
rameterized approximator is suggested to approxi-
mate the unknown function {(x) . Several function
approximators can be applied for this purpose; for
example, fuzzy logic systems, polynomials, and
neural networks, which can be represented as
W'®(z) with input vector z , weight vector W , node
number / , and basis function vector ®(z) . The uni-
versal approximation theorem indicates that, if [ is
chosen sufficiently large, then W' ®(z) can approxi-
mate any continuous function to any desired accuracy
over a compact set '), Thus, {(x) can be expressed
approximately by a neural network (NN) [20, 21,
22 ]

L(x)=W" "®(x) + ¢, (31)

where ¢ represents the function approximation
error, satisfying | ¢ | <e, with constant &, , and
the ideal weight W* can be obtained by

W, = argminweﬂw{fggq | Wd(x) -

{(x) |l (32)

Unfortunately, & is unknown and it is not possi-
ble to obtain the value of W* . For this situation, an

adaptive controller is developed to cope with the un-

known weight.
Denote W and £ (x) as the estimates of W* and
{(x) , respectively. Thus, we have
[(x)=Wd(x). (33)
Therefore, the reconfigured controller is
u=6G"(x,t)[-F(X,t) —v—AS -

SElRCLO IS - We(o ], ()

with the neural network learning mechanism,

W=YP(x)S" - pY(W-W,), (35)
where, Y, W, ,

The closed-loop system subject to the controller
(34) becomes,

and p > are design parameters.

S(1) == AS = £ 90X0) 1125 + n(x0) +

B(t -T){(x) - Wd(x)

It should be noticed that B(t — T){(x) -
W'®(x) can be further derived:

B(t-T){(X) - Wd(x) =

B(t -TYW" "®(x) - Wd(x) +B(t - T)

e=Wd(x) —O-T)W" "®(x) +

B(t-T)e, (36)

where W = W* — W . Clearly, each element of
B(t = T) is a bounded time function. This implies
that || B(t — T)e || <g,, . It follows that,

S(1) == AS = £l (X0) | %S +

n(x,t) + Wd(x) -
B(t-T)e+0O(t-T)W" "®(«x). (37)
For the stability analysis, a Lyapunov function

is designed. Denote a candidate as V = V, +
tr(W'Y™'W) . Using (23), the time derivative of V
is given by,
V<=2A,.(A)[|S |7 +&" +28"Wd(x) -
2S"B(t = TYé +28"O(t - TYW" "d(x) -
2r[ W'Y W] =-
2A (A IS |2 +&" +2r[ WD (x)S" -
W'Y W] -25"'B(t - T)e +
2S0(¢ - T)W* "®d(x) =—
20, (M) IS 12+ €7+ 200 [ W(W=-W,)] -

min

min
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28"B(t - T)e +28'O(t = T)W™ "®(x). (38)
By completing the squares, we have
2r[WI(W-W,)] =

2ar[W(W* =W, -W)] =

—2| W |+ 2 [W(W" =W,)] <
2 W W e+ IW =W, =
—IWE+ W =W,

where , the symbol | - | , denotes the Frobe-
.1 .
nius norm. Utilizing the formula 2« S?a' a+28'B

we have

’

(A) IS I1*+

min

. 1
- 28"B(t - T)¢ <A

247}

min

(M) I B(t -T)el*<

1
S A (A) 1Sl T 20

(A)Sszw

min

(A IS 1%+

min

1
250 = )W Td(x) <A

20,5, (M) 100 =T)W" "®(x) |7 <

1

— A (A)|IS ||+

T (A IS

2 (M) max,e, [V T W T2 ) |2

Applying the above equations to (38), it fol-
lows that,

V= LA IS 12 =p W 5 +p W™ -

W, 5+ 24, (A) ey + 24, (A)max, .,

[ DT W "®(q,q) [I* + &7

Let,

w=2X1(AN)ey, +2X L (A) x

max, ., Le VT W TD(x ) |2+ €7
(39)

Thus, we have V <0 if

P W =W, 17 +n
IS[> :
)\min(A)

. p W™ =W, [ +p
or, ||W||F>J T
p

This implies that S,W are uniformly bounded.
Moreover, define A = min{A,, (A),pA,,(Y)].

Since

1 -

VISP +—o W5,

IS 12+ iy 17 15
we have,
V<= AV+p || W =W, |5 +u.
Furthermore ,

W -W, |+ o
HSHS/\/p || a || F M + m_[\(,_l) ,
t=T,. (40)
where,
plIW: =W, [I;+p

Q=V(0) - o r (41)

Therefore, the following theorem is established.
Theorem 4.3 ( System Stability After Fault De-
tection ). Suppose that the Assumptions Al- A3
hold. Apply the controller (34) with (35) to the
system (1), when considering the fault occurrence.

Then, both the state error vector S and the weight

vector W are uniformly ultimately bounded, and S
satisfies the property (40).

Remark 3.2. In this section, the NN approxima-
tor is designed to cope with the fault occurrence.
Since NNs have learning capabilities, the proposed
fault-tolerant control can ensure that the closed-loop
system is stable ( see Theorem 4.3). One way to im-
prove the fault-tolerant control performance is to re-
duce the NN approximation error ¢ . This can be a-
chieved by increasing the number of nodes in the
NN. The bound (39) implies that decreasing the ap-
proximation error can reduce the value of u . This al-
so reduces the error S .

In order to implement the fault-tolerant control-
ler (34), the matrix G(x) must be invertible, as de-
scribed in A2), and in turn the developed controller
can be well defined. Now, a modified fault accom-
modation controller without requiring the assumption
A2) wis constructed. Here, the following assump-
tions are made.

A4) G(x,t) is positive definite or negative def-
inite.

This condition guarantees that the nonlinear sys-
tem (2) is strong controllable. Following a similar

procedure of proof as in Theorem 4.1 or Theorem 4.



Sunan HUANG et al; Design and Analysis of Fault Diagnosis and Fault-tolerant
22 Control for a Class of MIMO Nonlinear State Systems

3, the following stability theorems are established for

the modified fault accommodation control scheme.

Theorem 4.4 ( Stability Issue Without Fault)
Suppose that the assumptions Al, A3, A4 hold. Ap-
ply the following controller to system (1) without
considering faults and the original control ;

S
=——— [k, IS I*=-S"F(x,1t) -
SIG(x,t)S[ Al (x,1)

7~_i o ( x 2 2
So=—£lnG) 1718 1]

Then, the tracking errors S are UUB, and S sat-
isfies the property

-1

li S [=—.
im IS f5-

Theorem 4.5 ( Stability Issue Before Fault De-
tection) ; Assume that a fault occurs at 7 but not de-
tected. Suppose that the assumptions Al, A3, A4
hold. Apply the following controller to system (1)
and the original control signal

S

= T [k, S ? - S"F(x,t) -
u STG(x,t)S[ A Sl (1)

T_i - 2 2
Sv=—£lnCa) 171S 117

Then, for¢t € [T,T,) , the above controller
can ensure that the tracking error s, is bounded.
Theorem 4.6 ( Stability Issue After Fault Detec-
tion). Suppose that the assumptions Al, A3, A4
hold. Apply the following fault-tolerant controller to
the system (1) with considering faults;
S

= Faenyst RIS IS HGD — 8-
x’

SENTCO 1715 12 = S Wa()

Then, both the error vector S and the weight
vector W are uniformly ultimately bounded.
5 Case Study

This section presents an example to illustrate the

performance of the fault diagnosis and fault-tolerant

control scheme that has been developed in the pres-

ent work.

Consider the following system ;
X, = 0.1x, — 0.1x, [1 0} {ul]
= + +
i, - 0.1%, - 0.1x, 0 1]]u
gl(xl ,xl »Xp 5x2):|

(a2, ,%,,%,) + B(t _T>[ ) _

gZ(x] 35X %o ’xz)
Yi =X, Yy =X
where, 7, = 0.5cos(x,)cos(x,),n, =
0.5sin(x,)sin(x,) which are assumed to be unknown
and bounded by | 7,1 <1 = n,,| 0,1 <1 = 7,. First,

use the fault estimator proposed in (5), and choose
2 0
the gain A as {0 2} . The threshold value is com-
puted using,
1
w=w,=e " + Z[ 1 -e™*]

when | x,(0) | <1, i=1,2. During the test, the
first fault function is described by,

(%, %) ,%,,%,) = [1 = 0] x (3xl4,45 +
10),

while the second fault function is zero. The
fault occurs at T = 5s . The original controller is de-
signed according to (20), where k, =k, =10, =1,
and the desired trajectories are y,, = sin(7t) and y,, =
cos(t) for y, and y,, respectively. Fig. 2 shows the
control results and fault histories without considering
fault-tolerant scheme. From this figure, it is ob-
served that the errors of y, — y,, increase significantly
after the fault occurrence. It should be noticed that
the residual has exceeded the threshold, and the fault
has been detected at 7', =5.1564. Now we trigger the
proposed fault-tolerant controller after the fault is de-
tected. The parameters Y and p in the neural network
learning are first fixed at 0.5/ and p = 0.02, respec-
tively. The total number of NN nodes is [ = 80. The
NN basis is chosen as ® = [ ¢, , ¢, ,...,¢, | withe, =
exp

[EREIOREN - [t s€nsc ,054]T [ ?

207

i

Therefore, the neural network function contains
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I nodes whose centers are atc, (i =1,...,/;7=1,2,
3,4. ) evenly spaced in [-1,1], [-5,5],[-1,1]7,
[-5,5], respectively, and widths o, = 5. The initial
neural network weight vector is selected as W(0) =

W, = 0.0. Fig. 3 presents the performance of the

¥land ¥1q

2
=1 P N\ Yl e -‘\
= |f AN AN
'g 0 {\ {f 1\ / \ ’.l \\ .-“ \ p
s \ ,"/ \\ )',- ! \«_;’f -\/(f ,|"
- G = ——

. . Y .

“0 2 4 B 8 10

Time(s)

fault-tolerant controller. It is apparent that the state
tracking performance is satisfactory. This verifies

that the NN learning can reduce the negative effect

of the fault occurrence.

Fig. 3 Simulation results: fault—tolerant control

6 Conclusions
A fault detection and fault-tolerant control

method was developed and presented in this paper.
Using an observer model, the monitoring system
could send a reminder signal when a fault was detec-
ted. After receiving the signal, the NN-based fault-
tolerant control was triggered to continue maintaining
proper operation and minimizing the effect of the
fault. Future research will carry out an experimental
test to further verify the performance of the proposed

approach.
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