
INSTRUMENTATION, Vol. 7, No. 3, September 2020  1 
 

 

 

 

 

Concepts for Sensor Matching in  

Mechatronic Systems 

Clarence W. DE SILVA 

(Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4) 

Abstract: A typical mechatronic system consists of a multitude of components, and the sensors belong to an 

important and crucial class of such components. Optimal matching of the system components is implicit in the 

current definition of a mechatronic system. The focus of the present paper is the optimal matching of sensors 

with other hardware in the system. Sensor matching may be based on several concepts such as the operating 

frequency range (operating bandwidth), speed of response (and the corresponding rate of data sampling in 

digital conversion), the device sensitivity (or gain or data amplification), and the effect of component accu-

racy on the overall accuracy of the system. The present paper explores all these concepts and presents suita-

ble approaches for sensor matching through those criteria. The relevant procedures are illustrated using case 

studies. 
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1  Introduction 

The current definition [1] of a mechatronic system 

enhances the previously established definition, to in-

clude, multi-domain or multi-physics instead of just 

electromechanical products, an integrated (meaning 

the concurrent or simultaneous consideration various 

domains in the system) and unified (meaning the use of 

similar or analogous approaches for various domains in 

the system)  approach for the system development and 

operation rather than just an integrated approach, and a 

systematic approach for the system development, with 

a clear set of steps, leading to a “unique” outcome 

through design optimization. It is clear that design 

optimization, and hence “optimal instrumentation” is a 

requirement for a mechatronic system. From this en-

hanced definition it can be verified that a mechatronic 

system approach can lead to at least the following key 

benefits: 

 Optimality and better component matching 

 Increased efficiency 

 Cost effectiveness 

 Ease of system integration and expansion/enh- 

ancement 

 Compatibility and ease of cooperation with other 

systems 

 Improved controllability 

 Increased reliability 

 Increased product life 

In facilitating such benefits, proper matching of 

sensors with the other hardware such as that for signal 

conditioning and amplification and for data acquisition 

and sampling, is important for a mechatronic system. 

This is the focus of the present paper.  

The topic of sensor selection has been considered 

in other studies as well[2]. When matching a sensor with 

other hardware in a system, it is required to first iden-

tify the relevant matching criterion. The frequency 

range of operation (or, the operating bandwidth) is one 
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such criterion. Related to this is the speed of operation 

and also the rate of data sampling into a digital system 

(e.g., computer). The device sensitivity (or gain or data 

amplification) is another important criterion, which 

depends on the sensitivity of the individual compo-

nents, including the sensor. The effect of the compo-

nent accuracy, including that of the sensor, on the 

overall accuracy of the system is also an important 

criterion. The present paper considers all these criteria 

of sensor matching. The underlying procedures are 

presented and illustrated using case studies.      

2  Bandwidth Considerations  

Modeling considerations are important in the 

present context [3-5]. Also, the type of sensor and the 

nature of the mechatronic application are important [6]. 

Bandwidth has different meanings depending on the 

particular context and application [7, 8]. For example, 

when studying the response of a device, the bandwidth 

relates to the fundamental resonant frequency and 

correspondingly to the speed of response of the device 

for a given excitation. In band-pass filters, the band-

width refers to the frequency band (pass band) of the 

signal components that are allowed through the filter, 

while the frequency components outside the band are 

rejected. With respect to measuring instruments such as 

sensor systems, bandwidth refers to the range fre-

quencies within which the instrument measures a sig-

nal accurately (operating frequency range). As a par-

ticular note, if a signal passes through a band-pass filter 

we know that its frequency content is within the 

bandwidth of the filter, but we cannot determine the 

actual frequency content of the signal on the basis of 

that observation. In this context, the bandwidth appears 

to represent a frequency uncertainty in the observation 

(i.e., the larger the bandwidth of the filter, less certain 

is our knowledge about the actual frequency content of 

a signal that passes through the filter). In digital 

communication networks (e.g., the Internet), the 

bandwidth denotes the capacity (information capacity) 

of the network in terms of information rate (bits/s).  

Bandwidth is an important consideration in the 

component matching of a mechatronic system. In this 

context, bandwidth concerns the frequency range of 

operation and also the speed of response of a device. 

Specifically, consider a sensor having the primary time 

constant τs. Then, it is known that its operating fre-

quency is limited to at most 
1

s
, which represents its 

bandwidth. Next consider a piece of analog hardware 

such as a filer or an amplifier having the bandwidth 

bw . Then, in order to optimize the operating range of 

frequencies of the combined, the required matching 

relation is 

 
1

bw
s




   (1) 

Furthermore, according to Shannon’s sampling 

theorem, the data from the combined device has to be 

sampled at least twice this frequency (i.e., 2 bw ) in 

order to reduce the aliasing error in the sampled data. 

The bandwidth of the hardware component, in the 

present context may mean such frequencies as the 

half-power bandwidth, corner frequency, or break 

frequency. The half-power bandwidth refers to the 

frequency at which the power of the component re-

duces to half the value (or, the signal value reduction 

by the factor 2 ). The corner frequency or the break 

frequency is the frequency at which the magnitude 

asymptote of the Bode diagram of the component 

changes its slope (which is at a location of a pole or 

zero of the transfer function). For a low-pass filter, this 

may also represent its roll-down frequency. For a first 

order device, all these quantities are equal, but this is 

not the case in general. 

Consider the analog circuit that is connected to 

an analog sensor, as shown in Fig. 1. Here, 

vs = input voltage to the circuit (output of the 

sensor) 

vo = output voltage of the circuit. 

Suppose that the time constant of the analog 

sensor is s . In order to ideally match the sensor to the 

given analog circuit, we will determine the necessary 

relation between s  and the circuit parameters.  

For computations, we will use the numerical 

values 2.0 ms,  1.0 k ,  and 10.0 ks iR R      .  
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Also, we will estimate a suitable sampling fre-

quency for the data (output) from the analog circuit 

into a digital device. 

To obtain the circuit equation, in the time domain, 

we use the two properties of an op-amp: 1. Current 

into the op-am from each input lead is zero; 2. The 

potentials at the two input leads of the op-amp are 

equal. 

From the circuit it is clear that the voltage at both 

the +ve lead and the –ve lead of the op-amp is vo.  

Fig. 1 identifies the nodes A and B. 

First, we write the current balance equations at 

Node A, where the voltage is defined as vA:  

( ) 0s A o A
o A

i
f

v v v v d
C v v

R R dt

 
      

 01 o
s A o

i i

A
f f

dv dv
v v v C C

R R dt

R R
R

dt
R

 
     
 

 

Or,   01 A
s o f

o
A f

dv dv
v v kv

dt d
k

t
      (2) 

where we have defined,  

 
i

R
k

R
   (3) 

 f fCR   (4) 

Next, we write the current balance equations at 

Node B.  

Note: The current through the +ve lead of the 

op-amp is zero (a property of an op-amp). Also, the 

potential at Node B is vo. 
A

i

oo
i

v v dv
C

R dt


 

 A o i i
odv

v v C
d

R
t

   

Or,  A o
o

i
dv

v v
dt

    (5) 

where we have defined,  

 i i iCR    (6) 

Eliminate vA by substituting Equation (5) into (2).  

 

0

1 o
o o

i f

f o i

s o

o

dv dv
v v kv

dt dt

dvd
v

d dt

k

t

 



       
 

   
 


 

We get the input-output differential equation of 

the circuit: 

 
2

2
1 o o

o i f i s
dv d v

v v
dt dt

k       (7) 

Here, k, f , and i  are as expressed in (3), (4), 

and (6), respectively. 

Now, introduce the Laplace variable s into the 

input-output differential equation (7). We get the cir-

cuit transfer function, 

2

1

(1 ) 1
o

is f i

v

k sv s  

    

 

Clearly, this second-order transfer function 

 

 

 
 

Fig.1  An Analog Circuit Connected to an Analog Sensor 
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represents a low-pass filter. It has two poles, given by 

the roots of the characteristic equation: 2
f i s    

(1 ) 1 0ik s     

The break frequency of the filter is given by the 

pole with the smaller magnitude. The two poles are: 

 
 2(1 ) (1 ) 4

2

fi i i

f i

k k   

 

   
 

The discriminant,  2(1 ) 4 f iik     , may be 

evaluated using (leaving out the common term τi),  

 2 2(1 ) 4 (1 ) 4i i i ff
i

k C C
R

R
R R      

Assume that this expression is zero. Then, the 

filter has two repeated poles at, 
(1 ) (1 )

2 2f i

i

f

k k
  

  
    

1

2
i

f

R

R

RC

 
 

  . 

This second order filter has real poles (i.e., 

non-oscillatory system) not complex. Hence, it does 

not have a resonant frequency, and the filter bandwidth 

is given by the magnitude of the pole (or cut-off fre-

quency, or break frequency or corner frequency),

1
1

2 f
bf

iC R

R

R


 
  

 
. 

This is not the half-power bandwidth, as verified 

next. 

Consider the 2nd order low-pass filter with two 

repeated (and of course real) poles:
2

2 2
( ) n

n

G s
s





  

 

Note: The transfer function is normalized, so that 

its magnitude at zero-frequency is 1.  

From its Bode diagram it should be clear that n  

is the break frequency or the corner frequency, which is 

also the roll-down frequency of the filter. Hence it can 

be used to represent the bandwidth of the filter. It is 

also the magnitude of each of the two real poles of the 

filter (the pole location is n ). However, unlike the 

1st order low-pass filter, this is not the half-power 

bandwidth of the filter. This can be verified as follows. 

The magnitude of the transfer function is 
2

2 2
n

n



  
. 

Hence, its half-power frequency is given by,
2

2 2

1

2
n

n






  
. This evaluates to, 2 2 ( 2 1)n   , 

or ( 2 1) 0.64n n   . 

This is the half-power bandwidth of the filter, 

which is not equal to the corner frequency (or break 

frequency). 

The time constant of the sensor is τs. Hence, its 

half-power bandwidth is 
1

bs
s




  

Ideally, the bandwidth may be interpreted as the 

operating range (i.e., flat region of the transfer-function 

magnitude) of a filter or a sensor. Hence, for ideal 

matching of a sensor and a filter, we must have, 

bf bs   

Accordingly, the ideal component matching (in-

strumentation) relationship is, 
1 1

1
2 f siC

R

RR 
 
  

 
 

or, 

 1 1
2 i

s

fC R

R

R

  
  

 
    

Substitute in (8) the given numerical values: 

 2.0 ms,  1.0 k ,  10.0 ks iR R        

 
3

3

2.0 10
1 1

2 1.

1.0

10 0 .01 0fC

       
 

Hence, 

3
6

3

1.0

10.

2.0 10
1  F 1.1 10  F 1.1 μF

2 1.0 10 0fC


     
 

  
 

The maximum bandwidth of the combined  

analog device is, 
3

1
 rad/s 500.0 rad/s

2.0 10
b 
  


 

500.0
Hz 79.6 Hz

2
   

According to Shannon’s sampling theorem, the 

data sampling frequency into a digital device has to be 

at least twice this value  >160 Hz.  
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3  Sensitivity Considerations 

Sensitivity and sensitivity error are important 

rating parameters for any component in a mechatronic 

system. Sensitivity may be interpreted in several ways 

including the local slope of the input-output curve, the 

partial derivative of the input-output relationship, and 

the gain. The sensitivity of B to A indicates how B 

changes due to a change in A, and is expressed as  

/B A
B B

S
A A

 
 
 

in the limit   (9)   

It is important to optimize the gain (direct sensi-

tivity) of the overall system, and clearly this depends 

on the sensitivities of the individual components in the 

system. This aspect is investigated using a case study, 

which will also indicate ways to optimize the device 

gain.  

3.1  Case Study 

Consider the sensing and data acquisition ar-

rangement shown in Figure 2. The temperature T of an 

object is monitored by using an RTD (resistance tem-

perature detector). The resistance Rr of the RTD forms 

one branch of the Wheatstone bridge. The other three 

branches of the bridge have identical resistance R, 

which does not change due to the body temperature T. 

The bridge output (voltage) vs is modified by an ana-

log circuit. The voltage output from this circuit is 

sampled and digitized by an analog-to-digital conver-

ter (ADC), and read into a digital computer to process 

that data (for further action such as performance as-

sessment, fault diagnosis, control).  

The resistance of the RTD obeys the equation 

0 (1 )r rR R T   , where, 

Rr = resistance of the RTD, in ohms (Ω), at tem-

perature T (in °K)  

Rr0 = resistance of the RTD at temperature T0 

(the starting temperature) 

0T T T   = temperature rise (in °C) 

α = temperature coefficient of RTD resistance (in 

/°C)  

We assume that the starting temperature (the 

ambient temperature) T0 is known. The corresponding 

RTD resistance 0rR R  (the bridge completion re-

sistance).  

First, we will determine an equation relating the 

bridge output voltage vs to the temperature change ΔT 

of the object (in terms of the bridge supply voltage (dc) 

vref and α. Next, we derive the input-output differential 

equation of the analog circuit (signal conversion cir-

cuit) in the figure, in terms of the circuit parameters: 

resistances Ra, Rb, and Rf, and capacitance C.  

Circuit input voltage (sensor output) = vs    

Circuit output voltage (ADC input) = vo     

We obtain the transfer function G(s) of the ana-

log circuit from this result. We will sketch the Bode 

magnitude curve and the Bode phase angle curve (not 

to scale) of this transfer function. By examining the 

nature of the circuit transfer function (the analytical 

expression and the Bode curves), we will determine 

expressions for the following quantities, in terms of 

the circuit parameters: 

(a) Steady-state gain (amplification) provided by 

the circuit  

(b) High-frequency gain (amplification) provided 

by the circuit 

(c) The phase “lead” angle (in radians) provided 

by the circuit 

(d) Break points (frequencies, in radians/s) of the 

Bode plot. 

We will indicate the benefits that this circuit 

provides for the overall measurement system, in dif-

ferent frequency ranges.  

The following numerical values are given: 

The maximum useful temperature change that the 

RTD can accurately measure (the full-scale tempera-

ture) is 100.0°C, α = 0.008/°C, vref = 10.0 V.  

The ADC has 8 bits. It generates its maximum 

count for its full-scale input 6.0 V.  

The analog circuit parameters: Ra = 10.0 kΩ, Rb = 

2.0 kΩ and C = 2.0μF. Using them we will determine a 

suitable value for the feedback resistor Rf in order to 

realize the best sensitivity (gain) for the overall ar-

rangement (consisting of the sensor, Wheatstone 

bridge, analog circuit and the ADC). 

We will determine three suitable frequency ranges 
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of operation for the system, and the operating condi-

tions or requirements for each of these frequency 

ranges. Finally, we will determine a satisfactory sam-

pling rate (of data into the computer from the ADC) in 

each frequency range of operation, and a suitable upper 

limit for the time constant of the RTD. 

First, we apply 0 (1 )r rR R T   . Hence, the 

change in the RTD resistance 0r rR R R    corres-

ponding to the temperature change ΔT is, 

 0rR R T    (10) 

It is given that,  

 0rR R  (11)  

where, R is the resistances of the non-active branches 

of the Wheatstone bridge. Hence, the bridge is ba-

lanced in the beginning, and the bridge output is zero. 

From the standard result of a Wheatstone bridge 

(up to the O(1) term of the Taylor series expansion), the 

bridge output voltage, corresponding to a resistance 

change of  ΔR in the active branch, is 
4s ref

R
v v

R


 . 

Substitute (10) and (11): 

 
1

4s refv v T   (12) 

Let,  

 s n pv v v   (13)  

where, vn = bridge node potential going toward the 

–ve lead of the op-amp and vp is the bridge node po-

tential going to the +ve lead of the op-amp (See Fig. 

2). 

Now we use the two properties of an op-amp: 1. 

Current into the op-am from each input lead is zero; 2. 

The potentials at the two input leads of the op-amp are 

equal. 

Current summation at the inverting input (- lead) 

node of the op-amp: 1n p p o p p

a b f

v v v v v v v

R R R

   
  = 

0 or (from (13)), 

 1 0ps o

a b f

v vv v

R R R


    (14) 

where, v1 = potential at the junction between C 

and Rb (see Fig. 2). 

  1
b b

p s o
a f

R R
v v v v

R R
    (15) 

Current balance at the junction of C and Rb:   

 
11( ) pn

b

v vd v v
C

dt R


  (16) 

 Substitute (16) and (15) in (14), to eliminate v1:  

( ) 0s b b o
n p s o

a a f f

v R R vd
C v v v v

R dt R R R

 
      

  
   

(from (13)) 0s b b o
s s o

a a f f

v R R vd
C v v v

R dt R R R

 
     

  
 

 

 
 

Fig.2  Temperature Monitoring of an Object 
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 0s b s s b o o

a a f f

dv R dv v R dv v
C C C

dt R dt R R dt R
       

 1 b s s b o o

a a f f

R dv v R dv v
C C

R dt R R dt R

 
     

 
 

   s o
f a b f s a b a o

dv dv
CR R R R v CR R R v

dt dt
      

 I/O differential equation:  

 fo s
b o a b s

a

Rdv dv
R C v R R C v

dt R dt
       

 (17) 

In the Laplace domain (
d

s
dt

 ), we have the 

circuit transfer function 

 
 

 
 

1 1
( )

1 1
a bf ao

s a b b

R R CsR sv
G s k

v R R Cs s




        
 

 

where, gain (steady-state value, i.e., at ω = 0) 

f

a

R
k

R
 ; and time constants  a a bR R C    and 

b bR C    

As usual, for convenience, we ignore the –ve 

sign on the transfer function. As we know, the sign in 

a transfer function (of an op-amp circuit) can be re-

versed in many ways, and it has no significance in the 

subsequent analysis.  

The corresponding frequency transfer function 

(obtained by setting s j ) is 

 
 
 

1
( )

1
a

b

j
G j k

j

 


 





 (18) 

The Bode curves (solid lines) and their asymp-

totes (broken lines) are shown in Fig. 3. As usual, first 

the asymptotes are sketched, with appropriate slopes, 

and then the actual curves are sketched (roughly) 

based on the asymptotes. 
 

Procedure for obtaining the asymptotes: 

At low frequencies: We have 1.0a   and 

1.0b   , and they can be neglected wrt 1.0. Hence, 

( )G j k  at low frequencies. This is a “real” value. 

Its magnitude is  

 
f

a

R
k

R
  (19) 

This is the steady-state gain. 

Its phase angle is 0° (because the transfer func-

tion is “real” now).  

 

At intermediate frequencies between a   

1/ a  and 1/b b  : The zero term (i.e., transfer 

function numerator)  1a j   dominates over the 

pole term (i.e., transfer function denominator) 

 1b j   . Note: a b  .   

This results in a “phase lead” action, and 

 ( ) 1aG j k j    . This provides a magnitude as-

ymptote of +ve slope 20 dB/decade (in log scale), and 

a phase angle asymptote at 90° (corresponding to the 

maximum possible lead action, which is the derivative 

action).  

At high frequencies: We have 1.0a   and 

1.0b   , and hence 1.0 can be neglected in the 

pole term and in the zero term. Then, ( )G j   

( ) 1 1f a ba
f

b a b b a

R R R
k R

R R R R




  
   

 
. This is also a 

“real” value. Its magnitude is the overall gain now: 

 
1 1

Gain f
b a

R
R R

 
  

 
 (20) 

Again, the phase angle is 0° (because the transfer 

function is real).  

Note: The break frequencies are 1/a a  and 

1/b b  , which are the points of intersection of the 

asymptotes. 

The important results are the following. 

(a) The steady state corresponds to 0  . From 

the transfer function (iii), the corresponding gain (the 

transfer function magnitude) is 
f

a

R
k

R
 , as obtained 

before.  

(b) For high frequencies,  . From the 

transfer function (iii), the high-frequency gain (i.e., 

the transfer function magnitude for  ) is  

( ) 1 1f a ba
f

b a b b a

R R R
k R

R R R R




  
   

 
, as obtained be-
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fore. 

(c) The numerator of ( )G j  provides a phase 

lead of 1tan a  . The denominator of ( )G j  pro-

vides a phase lag of 1tan b  . Hence, the overall 

phase “lead” (in radians) provided by the circuit is 
1 1tan tana b     , where  a a bR R C    and 

b bR C  . 

(d) As indicated before, the break points (in ra-

dians/s) of the Bode curve are: 
1

a
a




 and
1

b
b




   

Benefits of the Circuit: 

1. It has two frequency ranges, the low-frequency 

range and the high frequency range, that provide al-

most constant signal amplification of gain f

a

R

R

 
 
 

 and 

( )f a b

a b

R R R

R R

 
 
 

, respectively, and zero phase change, 

for the sensor signal. 

2. In the intermediate frequency range, it becomes 

a “lead compensator” providing a phase lead, which 

has the following benefits of “derivative” or “preview” 

action: suppressing signal overshoots, speeding up the 

response, improving the system stability, etc. 

3. It provides its very high input impedance to the 

sensor and its very low output impedance to the ADC 

(due to the op-amp in the analog circuit), thereby con-

siderably reducing electrical loading.   

Now, substitute the given numerical values in 

1

4s refv v T  , for the full scale temperature rise of 

100 CT   . The corresponding sensor output is  

1
.008 10.0 100.0 2.0 V

4sv        

To realize the best overall sensitivity for the given 

arrangement, when the sensor generates its full scale 

voltage (2.0V), the ADC should receive its full-scale 

input voltage of 6.0 V (which corresponds to 28 = 256 

counts). Correspondingly, then, the analog circuit 

should provide its largest gain. As we have established 

before, this condition corresponds to the high fre-

quency range of operation, when the maximum gain 

(the high-frequency gain) is provided by the circuit.  

Hence, the required gain from the circuit =

6.0 (V)
3.0

2.0 (V)
  

The high-frequency gain of the circuit should be 

equal to this value. Hence,  

3 3

1 1 1 1
3.0

10.0 10 2.0 10
f f

b a

R R
R R

            
  

 35.0 10 5.0 kfR         

 

 
 

Fig.3  Bode Magnitude and Phase Angle Curves  

of the Circuit 
 

The maximum count of the ADC = 28 = 256 

counts. This corresponds to 6.0 V into the ADC. The 

corresponding temperature rise measured by the sensor 

is 100.0°C (given). Hence, the overall sensitivity of  

the device under this condition is 256 /100.0  

counts/ C =  2.56 counts/ C  . 
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Note: The sensitivity of the ADC alone is 

256 / 6.0 counts/V = 42.7 counts/V  

  3 6

3

(10.0 2.0) 2.0 10 10

24.0 10 s

a a bR R C 



       


  

The corresponding break frequency (see Fig. 3), 

3

1 1
rad/s 41.67 rad/s 6.6 Hz

24.0 10
a

a


 

   


3 6 32.0 2.0 10 10 4.0 10 sb bR C          

The corresponding break frequency (see Fig. 3), 

3

1 1
rad/s 250.0 rad/s 39.8 Hz

4.0 10
b

b


 

   


 From Fig. 3 it is clear that there are three possible 

frequency ranges of operation. 

Frequency Range 0.0 to 6.6 Hz (Low frequency 

range): 

In this frequency range, the system (analog circuit 

in particular) operates in a steady state, with amplifi-

cation (low-frequency gain) 
3

3

5.0 10
0.5

10.0 10

f

a

R

R


 


.  

The corresponding sensitivity of the overall de-

vice is 

 

256 (counts) 2.0 (V)
0.5 0.43 counts/ C

6.0 (V) 100.0 ( C)
   

 . 

So, in this range, the sensitivity of the device is 

relatively poor. 

As a rule of thumb (or by Shannon’s sampling 

theorem), a suitable sampling rate in this frequency 

range should be at least 6.6×2 samples/s  14 sam-

ples/s 

Frequency Range 6.6 Hz to 39.8 Hz (Intermediate 

frequency range): 

In this frequency range, the analog circuit func-

tions as a lead compensator. The circuit conditions are 

dynamic (not steady) as clear from Fig. 3. So, the 

overall sensitivity will also vary with frequency. 

However, the device will be more stable (even though 

dynamic) as the circuit is a lead compensator in this 

frequency range. 

Frequency Range > 39.8 Hz (High frequency range): 

In this frequency range as well, the system (ana-

log circuit in particular) operates in a steady state. As 

obtained before, the device will have the best sensitiv-

ity then, at 2.56 counts/℃. 

As a rule of thumb (or by Shannon’s sampling 

theorem), a suitable sample rate in this frequency range 

should be at least 39.8×2 samples/s  80 samples/s. 

But depending on the high frequency limit of actual 

operation, the sampling rate should be increased cor-

respondingly (at least to twice the highest frequency of 

operation). 

Let the time constant of the RTD be r . The 

corresponding break frequency (corner frequency of 

the Bode curve of the RTD) is 
1

r
r




 .  

The frequency range 0 to  
1

r
r




  rad/s is the 

nominal flat range of the Bode magnitude curve of the 

RTD, which is the nominal operating range of fre-

quencies for the RTD. However, close to the break 

frequency, the magnitude curve is not quite flat (see Fig. 

4). So, as a rule of thumb, take the desirable upper 

operating frequency for the RTD as 
1 1

2 2r
r




 . The 

highest operating frequency of the system is not given 

in the question. However, for the given numerical 

values, the lower limit of the upper frequency range of 

operation has been computed as 39.8 Hz. Now, for 

example, take the upper frequency limit of operation as 

100 Hz. Then we need, 
1

100.0 2
2 r




   rad/s. Or, 

0.0008 s = 0.8 msr  .   

 

 
 

Fig.4  Bode Magnitude Curve of the RTD 
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4  Error Considerations 

Causes for error in a mechatronic system (having 

interconnected and interacting multiple components) 

include: Instrument instability, noise and external dis-

turbances (undesirable inputs), poor calibration, sys-

tem errors (due to inaccurate analytical models, control 

laws, etc.), parameter changes (e.g., from environ-

mental changes, aging, and wear), unknown nonli-

nearities, sensor errors, and improper use of the in-

struments (measurement setup, operating conditions, 

human error, etc.). These can be in the form of signal 

errors (at source) and measurement errors. They can 

depends on calibration, physical hardware, actual op-

erating conditions (power, signal levels, load, speed, 

environmental factors, etc.), design operating condi-

tions (operating conditions for which the instrument is 

designed for: normal, steady operating conditions; 

extreme operating conditions), extreme transient con-

ditions (e.g., emergency start-up and shutdown condi-

tions), instrument setup shortcomings, and other 

components and systems to which the instrument is 

connected (e.g., dynamic coupling, loading, or noise 

from other connected devices).  

In this context it is important to know: 

(a) How component errors are reflected in the 

final output—error propagation 

(b) Combining component errors—error combi-

nation.  

Both these depend on the errors in the system 

components (their variables and parameters), their 

errors, and how they interact; the measured variables or 

parameters (of individual components, etc.) that are 

used to compute (estimate) the required quantity (va-

riable or parameter value); and the relation among 

components (model). Then, it is important to know: 

How component errors propagate within a mul-

ticomponent system (Error propagation) 

How individual errors in variables/parameters 

contribute toward overall error (Error combination) 

4.1  Analytical Basis for Error Combination 

Component contribution to the system output may 

be expressed as  

 1 2( , , , )ry f x x x   (21) 

Here, xi = independent system variable/parameter 

values whose errors propagate/combine into error in 

the output y (or required parameter value), represented 

by increment of y). Take increments, which represent 

the associated error, 

 1 2
1 2

...... r
r

f f f
y x x x

x x x
     

   
  

 (22)   

The fractional error is given by, 

1 1

r
i i

i i

r
i

y i
i ii

x xy f

y y x

x f

yx
e e

x





 
 

 
   

  
   (23) 

Here,  

δy/y = ey = overall (propagated) error (fractional 

and nondimensional)  

δxi/xi = ei = component error (fractional and non-

dimensional) 

i

i

x f

y x




 = sensitivity of error in xi on the com-

bined (propagated) error in y (non-dimensional)  

From (23) we can express the absolute error as, 

 
1

r
i

ABS i
ii

x f
e e

y x




  (24)    

This is an upper bound (conservative estimate) for 

the overall error (Note: The individual terms in the sum 

(23) may be negative) 

The SRSS (Square Root of Sum of Squares) error 

may be expressed as, 

 

1/22

1

r
i

SRSS i
ii

x f
e e

y x

        
   (25) 

Note: eSRSS < eABS when two or more nonzero error 

contributions are present  

SRSS is particularly suitable when the component 

error is represented by the standard deviation of the 

associated variable/parameter value and when the 

corresponding error sources are independent. 

The degree of importance of component error is 

measured by the non-dimensional sensitivity: i

i

x f

y x




 

These results are useful in: 1. Design of multicompo-

nent systems; 2. Cost effective selection of instru-
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mentation, including sensors. 

4.2  Case Study 

Consider an RTD (a temperature sensor) that has 

the empirical relation, relating its resistance R (in Ω) 

and the measured temperature rise ΔT (in ℃), given 

by 

 0 (1 )r rR R T    (26) 

where, 

Rr = resistance of the RTD, in ohms (Ω), at tem-

perature T (in °K)  

T0 = starting temperature, which is accurately 

known 

0T T T   = temperature rise (in °C) 

α = temperature coefficient of RTD resistance (in 

/°C). It is known very accurately. 

Also, consider a thermistor (a temperature sensor) 

that has the empirical relation, relating its resistance Rt 

(in Ω) and the measured temperature T (in ºK), given 

by, 

 0
0

1 1
exp ttR R

T T

  

   
   

 (27)  

where, 

β = characteristic temperature of the thermistor (a 

positive quantity, in °K). It is known very accurately 

T0 = starting temperature, which is accurately 

known. 

We will determine the relationships between 0rR

and 0T , and 0tR  and 0T . 

In a typical sensing procedure for temperature, the 

resistance R of the sensor is measured and (26) or (27), 

the RTD model or the thermistor model, is used to 

compute the corresponding temperature T.  There is 

measurement error in Rr and Rt, and model error in 0rR  

and 0tR . We will assume that α and β are known ac-

curately. We will determine the expressions (in terms 

of the indicated model parameters) for the sensitivity 

of the RTD and the sensitivity of the thermistor (in 

Ω/°C).  

Using the “absolute error” method, we will derive 

an equation for the combined fractional error Te  in the 

temperature (estimation) from the RTD, in terms of the 

fractional errors
rRe and

0rRe of Rr and 0rR , respectively. 

From the result, we will study the effect of a larger T 

(i.e., larger ΔT) on the fractional error in the deter-

mined temperature. 

Next, using the “absolute error” method, we will 

derive an equation for the combined fractional error 

Te  in the temperature (estimation) from the thermistor, 

in terms of the fractional errors
tRe and

0tRe of Rt and 

0tR , respectively. From this relation, we will show that 

a larger T will result in larger fractional error in the 

determined temperature. 

Suppose that for the thermistor, 

0 05000 Ω  at  298 K  (i.e., 25 C)tR T     and = 

4200 K . We will compute the sensitivity (in Ω/°C) of 

the thermistor in the neighborhood of temperature T0. 

Compute the value of the RTD parameter Rr0 for the 

RTD to have this same sensitivity, with α = 0.008/°C. 

Now use the same numerical values as in Part (d). 

For the RTD, given that 0.01
rRe    and 

0
0.02

rRe   , 

compute the fractional error Te  in the determined 

(estimated) temperature from the RTD in the neigh-

borhood of temperature T0. Also, for the thermistor, 

given that 0.01
tRe     and 

0
0.02

tRe   , compute 

the fractional error eT in the determined (estimated) 

temperature from the thermistor in the neighborhood of 

temperature T0. From these values we will determine 

which sensor is more accurate in the temperature 

measurement, in the given temperature neighborhood.  

The characteristic curve of the RTD is sketched 

in Fig. 5. Consider the given RTD model (26). Set 

T=T0 (i.e., ΔT = 0.0). Then 0rR R . This means that 

the empirical parameter 0rR  is the resistance of the 

RTD at the reference temperature T0. These key points 

of RTD are marked in Fig. 5.  

The characteristic curve of the thermistor is 

sketched in Fig. 5. Consider the given thermistor 

model (27). Set oT T . Then the exponent becomes 

zero, and its exponential value is 1. Hence, then 

0tR R . This means that the empirical parameter 0tR  

is the resistance of the thermistor at the reference 
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temperature T0. Next, letT  . Then the exponent 

becomes 
0T


 . Hence, the resistance at very     

large values of temperature is 0
0

exp ttR R
T




 
   

 
  

0

0

exp 

tR

T

 
 
 

. Note: This value is 0tR .  These key 

points of thermistor are marked in Fig. 5.  

For the RTD,   

  0 01 ( )r rR R T T    (28) 

Hence, the RTD sensitivity, 

 0
r

r
dR

R
dT

  (29) 

Note: The input to sensor is the temperature 

change, and the corresponding output of the sensor is 

the resistance change (of course, in practice, that re-

sistance change is converted in a bridge output etc. 

For the thermistor, we have (27). Hence, the 

thermistor sensitivity is, 

 

0
0

2

2 0
0

1 1
exp 

1 1
exp 

t
t

t

R
T T

d

T

R
T TT

R

dT









              
  

   
 



 

 (30) 

In the RTD model (28), take the differentials of 

the individual terms. Note: There cannot be an error in 

the reference temperature oT itself, because it is a 

value that one is free to select, and is known to be 

accurate. Also, since  is very accurate (given), it too 

cannot have error. Of course, there will be errors in 

the associated resistance 0rR . We get, rR   

 0 0 01 ( )r rR T T T R     . Divide throughout by 

0rR . 

  0
0

0 0

1 ( ) rr

r r

RR
T T T

R R


     .  S ince R   

0rR ,  we  have   
0

r r

r r

R R

R R

 
   [1Rr Te Te    

00( )]
rRT T e     

00
1

1 ( )
rT Rr Re e T T e

T



    . 

Or,  

  
0

1
1

rT Rr Re e T e
T




    . With the absolute 

method of error combination,    

   
0

1
1

rT Rr Re e T e
T




     (31) 

Note: We use of the “+” sign instead of “−” on the 

RHS of the error equation since we employ the “ab-

solute” method of error combination (i.e., positive 

magnitudes are used regardless of the actual algebraic 

sign). However, each error value is  . There is a “T” 

term in both numerator and denominator of the RHS of 

(31). Hence, its effect (whether increasing or decreas-

ing the RHS) is not immediately clear. We address this 

issue as follows. We write (31) as 
1

( )Te a bT
T

  , 

where, 

  
00

1
(1 )

rRr Ra e T e


    and 
0

0
rRb e    

The sign of a depends on the values of the para-

meters of the numerator of the expression (Roughly, a > 

0 if 0 2T   and a < 0 if 0 2T  ). However, eT is 

much smaller than 1.0 and is >0.0 (because it is a 

“magnitude with an associated  ). See Fig. 6. 

Whether eT increases or decreases with T depends on 

the sign of a (specifically, decreases if a>0 and in-

creases if a<0). In summary, for an RTD, the effect of a 

larger T (i.e., larger ΔT) on the error in the determined 

temperature is not straightforward, and depends on the 

values of α and T0. 

For a thermistor, write the sensor equation (27) 

as, 

0
0

1
ln ln

1
tt T

R
T

R 
 

   
 

 and take the differ-

entials of the individual terms. Note: There cannot be 

an error in the reference temperature oT itself, be-

cause it is a value that one is free to select, and is 

known to be accurate. Also, since  is very accurate 

(given), it cannot have error. Of course, there will be 

errors in the associated resistance 0tR . 

2
0

0

t t

t t

R R T

R R T

        
0tR R Te e e

T


   . 



INSTRUMENTATION, Vol. 7, No. 3, September 2020  13 
 

 

 

 

 

With the absolute method of error combination,     

 
0

( )
t tT R R

T
e e e


   (32) 

Note: We use of the “+” sign instead of “−” on the 

RHS of the error equation since we employ the “ab-

solute” method of error combination (i.e., positive 

magnitudes are used regardless of the actual algebraic 

sign). However, each error value is  . It is clear from 

(32) that, for a thermistor, a larger T will result in larger 

fractional error in the determined temperature. 

 

 

 

Fig.5  Characteristic Curves of RTD and Thermistor 

 

For the thermistor, the sensitivity (3) 
2 0tR

T


   

near T0 (i.e., 0T T ). With, 

 0 05000 Ω  at  298 K  (i.e., 25 C)tR T     and 

4200 K   , 

2 0 2
5000.0 236.5 / K

298.0

4200.0t
tR

T

dR

dT


         . 

For the RTD to have the same sensitivity (with  

α=0.008/°C), we need 0 0 0.008r
r r

dR
R R

dT
     

236.5 . 

Note: The sign of a sensitivity value is immate-

rial). 

 0
236.5

30000.0 
0.008rR     

 
 

Fig.6  The Effect of the Sign of a 

 

For the RTD, the error relation (31) 

0

1
( )

rRr Re e
T

   in the neighborhood of 0T T .  

  

Now substitute the given numerical values for 

RTD: 

1
(0.01 0.02) 0.0126 0.013

0.008 298.0Te     


   

For thermistor, substitute the given numerical 

values in (32): 
400

(0.01 0.02) 0.003
4200Te       

It follows that the temperature estimate from the 

RTD is much less accurate than that from the ther-

mistor.  

5  Conclusions 

The focus of the present paper was the optimal 

matching of sensors with other hardware in the system. 

The present paper explored the fact that sensor 

matching was based on such concepts as the operating 

frequency range (operating bandwidth), speed of re-

sponse (and the corresponding rate of data sampling in 

digital conversion), the device sensitivity (or data am-

plification), and the effect of component accuracy on 

the overall accuracy of the system. Also, the present 

paper presented suitable approaches for sensor 

matching through these criteria. The relevant proce-

dures were illustrated using case studies. It was con-

cluded that optimal matching of the system compo-

nents is implicit in the proper definition of a mecha-

tronic system. 
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