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Abstract: The rapid development of the Internet of Things (IoT) and modern information 
technology has led to the emergence of new types of cyber-attacks. It poses a great potential 
danger to network security. Consequently, protecting against network attacks has become a 
pressing issue that requires urgent attention. It is crucial to find practical solutions to combat 
such malicious behavior. A network intrusion detection (NID) method, known as 
GMCE-GraphSAGE, was proposed to meet the detection demands of the current intricate 
network environment. Traffic data is mapped into gaussian distribution, which helps to ensure 
that subsequent models can effectively learn the features of traffic samples. The conditional 
generative adversarial network (CGAN) can generate attack samples based on specified labels to 
create balanced traffic datasets. In addition, we constructed a communication interaction graph 
based on the connection patterns of traffic nodes. The E-GraphSAGE is designed to capture both 
the topology and edge features of the traffic graph. From it, global behavioral information is 
combined with traffic features, providing a solid foundation for classifying and detecting. 
Experiments on the UNSW-NB15 dataset demonstrate the great detection advantage of the 
proposed method. Its binary and multi-classification F1-score can achieve 99.36% and 89.29%, 
respectively. The GMCE-GraphSAGE effectively improves the detection rate of minority class 
samples in the NID task. 
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0 Introduction 
With its widespread implementation, IoT has 

become a hot spot in the current development of network 
technology[1]. The applications and services of the IoT 
cover various fields, such as logistics, healthcare, 
transportation, and environmental protection. This 
provides new intelligent solutions for the production, life, 
and social development of people[2]. However, it is typical 
for sensor nodes in IoT settings to have limited storage, 
computing power, and energy, making them easy targets 
for attacks[3]. This issue causes a notable decline in the 
performance and quality of IoT service, which poses 
major security threats and financial losses to users and 
organizations alike[4,5]. As the risk of network attacks and 

data breaches continues to grow, it is crucial to detect 
abnormal traffic quickly and accurately in intricate 
network environments. 

Network intrusion detection system (NIDS) plays an 
important role in the current network environment with its 
excellent ability to recognize malicious network traffic. 
There are two main types of NIDSs: signature-based 
detection and anomaly-based detection[6]. Since 
signature-based detection is challenging to detect 
zero-day attacks, anomaly-based detection has become 
the focus of current academic research[7]. Anomaly-based 
intrusion detection methods mainly consist of statistical 
learning[8,9], machine learning (ML)[10,11], and deep 
learning (DL)[12,13]. Although intrusion detection research 
has advanced significantly due to the development of ML 
and DL, the current detection models still have some 
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limitations. 
At this stage, most DL-based NID models analyze a 

single link or a local network and only use traffic features 
for classification and detection. Due to the lack of 
grasping the global network information, their detection 
accuracy is difficult to improve. Graph neural network 
(GNN) extends DL methods to non-euclidean structure 
data (Graph). With its strong graph representation and 
feature extraction abilities, GNNs have emerged in 
network security tasks such as traffic prediction and 
intrusion detection in recent years, showing great 
detection potential. Network traffic is the detection object 
of NID, consisting of IP addresses, port numbers, and 
other traffic features. A traffic communication graph can 
be constructed by mapping IP addresses and ports to 
nodes and traffic features to edges[15]. Therefore, using 
graphs to explore the hidden spatial information in the 
topology of traffic communication networks is highly 
compatible with NID tasks and deserves in-depth 
research[16]. Lo et al. introduced GraphSAGE into 
intrusion detection and proposed E-GraphSAGE. The 
model can sample and aggregate edge data of the graph, 
demonstrating its potential for categorizing network 
traffic. Lan et al. [17] improved the E-GraphSAGE model 
with their E-miniBatch GraphSAGE. Mini-Batch training 
enables the model to better adapt to complex network 
environments. However, it did not perform any 
undersampling and directly used the full UNSW-NB15 
dataset. The high level of imbalance in the data can 
significantly impact the classifier's learning bias, leading 
to limited classification performance. Chang et al. [15] 
proposed a NID scheme called E-ResGAT, which 
integrated residual learning into GNN. Although 
E-ResGAT has excellent detection performance, it 
consumes much more computational resources than the 
E-GraphSAGE model due to the residual network. 

By fully using the graph structural features, the 
above method improves the performance of intrusion 
detection to some extent. In particular, GNN performs 
quite well in the binary classification task of determining 
whether the traffic is abnormal, and its detection accuracy 
is as high as 99%. However, in the multi-classification 
task of distinguishing attack categories, GNN does not 
perform as well as it should. Detecting anomalous traffic 
is the basic requirement for NID models. An advanced 
NIDS should also be able to execute appropriate defenses 
against different attack types. This places a higher 
demand on accurately recognizing the kind of attack. 

In applications of intrusion detection, network 
security, etc., attack samples are usually much less than 
normal samples. In cases where data is imbalanced, the 
classification results of the NID model may show favor 
towards the majority class. This can have a detrimental 
effect on the model's accuracy. As a result, the data 
imbalance problem has become one of the most common 
challenges in intrusion detection. To address this problem, 
JIANG[18] developed a hybrid sampling method 
combining OSS and SMOTE. With data balancing, this 
approach improves the detection accuracy of deep 

hierarchical networks in the NID task. While sampling 
can be an effective solution for addressing data imbalance, 
simple oversampling may generate samples that do not 
conform to the original data distribution. This can result in 
overfitting of the data and limit the effectiveness of the 
NID task. 

The fast progress of deep learning has brought 
DGMs like the variational autoencoder (VAE) and the 
generative adversarial network (GAN) into view. They 
overcome the limitations of data sampling and have 
become a common means of solving the data imbalance 
problem. Xu[19] proposed an LCVAE model based on the 
log hyperbolic cosine (log-cosh) function to improve the 
loss function of the conditional variational autoencoder 
(CVAE). It can better model intrusion data's discrete 
nature and outperform the oversampling methods such as 
ROS, SMOTE, and ADASYN. The VAE and its variants 
can learn the data distribution by minimizing the KL 
divergence between the latent and prior distributions. 
However, due to the limitations of the distribution 
assumptions, it may produce low-quality samples. In 
contrast, GAN can generate high-quality data directly 
without coding, which is not limited by data distribution, 
making it a mainstream generative method in the field of 
NID. Lee[20] utilized GAN to generate samples of rare 
categories in attack traffic. Its classification performance 
on a random forest classifier was better than that of 
SMOTE sampling. Dlamini[21] designed a conditional 
generative adversarial network (CGAN) that is 
well-suited for anomaly detection. The method was 
proven effective through experiments conducted on the 
NSL-KDD and UNSW-NB15 datasets. CGAN is more 
advanced than GAN because it can generate traffic 
samples of specific classes, which shows that CGAN has 
a significant potential for generating traffic data. 

GNN excels at extracting global traffic features, 
while CGAN is highly effective in generating traffic data. 
Inspired by this, this paper conducts further research and 
proposes the GMCE-GraphSAGE NID model, in which 
CGAN is combined with E-GraphSAGE, a graph neural 
network algorithm, to enhance the detection ability. 
Traffic features are mapped into gaussian distribution so 
that subsequent models can effectively learn the features 
of traffic samples. In addition to solving the data 
imbalance problem, we investigate NIDs using graphs. 
From it, global behavioral information is combined with 
traffic features, providing a solid foundation for 
classifying and detecting. Our approach performs well in 
binary and multi-classification with an advanced nature. 

In summary, the main contributions of this paper are 
as follows: 

1) We proposed a NID method known as 
GMCE-GraphSAGE, in which the conditional generative 
adversarial network (CGAN) is combined with 
E-GraphSAGE, a graph neural network (GNN) algorithm, 
to enhance the detection ability. 

2) We mapped traffic features into gaussian 
distribution so that subsequent models can effectively 
learn the features of traffic samples. On the basis of 
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CGAN, a DGM is designed for NID tasks, which can 
generate samples that closely resemble the spatial 
distribution of original data. 

3) We constructed a traffic communication 
interaction graph on the basis of connection patterns of 
traffic nodes. In addition, E-GraphSAGE, as a 
classification model, is designed to capture both the 
topology and edge features of the traffic graph. This 
provides a solid foundation for classifying and detecting. 

4) We compared the performance of 
GMCE-GraphSAGE with several other state-of-the-art 
models. The experimental results show our model 
outperforms other methods in terms of accuracy, precision, 
and F1-score. This indicates that GMCE-GraphSAGE 
provides a practical approach for NID. 

The remaining sections of this paper are organized as 
follows. Section II describes the proposed model in detail. 
Section III introduces the experimental environment and 
evaluation basis. Section IV shows the experimental 
results. Section V provides the conclusion of the work. 

1 GMCE-GraphSAGE Model 
As a proven NID method, the flowchart of 

GMCE-GraphSAGE is shown in Fig.1 and consists of 3 
steps: 

Step 1: Traffic data preprocessing. In the data 

preprocessing paradigm, the traffic features were mapped 
into gaussian distribution by estimating the optimal 
parameters for stabilizing the variance and minimizing 
the skewness through maximum likelihood. 

Step 2: Data Generation. To fully learn the 
distributional characteristics of gaussian traffic data, a 
CGAN model was constructed. It can generate attack 
samples of the minority class to balance the traffic dataset. 

Step 3: Edge feature extraction and classification. 
We constructed a traffic communication interaction graph 
and the E-GraphSAGE algorithm was used to capture the 
edge features and topology information of the traffic 
graph. From it, the global behavioral information and 
features of the traffic are fused, which provides a solid 
foundation for classifying and detecting. 

1.1 Data preprocessing 
Data preprocessing consists of the following two 

steps: 
Numerical processing: 
In addition to the source/destination IP address and 

port, three symbolic features are included in the 
UNSW-NB15 dataset: proto, state, and service. In order to 
make model training easier, we use the label encoder 
method to convert the seven symbolic-based features into 
digital representations. 

 

 
 

Fig.1 Flow chart of the GMCE-GraphSAGE method 
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Normalization processing: 
Due to the different dimension criteria between the 

features of the raw traffic, training directly on these 
features can affect the classification prediction results of 
the model. Therefore, we use the Yeo-Johnson mapping 
transform to normalize the traffic features into a gaussian 
distribution of the same dimension, as is shown in Eq.1. 
gaussian mapping makes model training results more 
dependent on the properties of the data itself. In addition, 
it lessens the computational complexity of subsequent 
models, leading to quicker model convergence. 
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1.2 CGAN data generation 
1.2.1 GAN model 

The structure of the classical GAN model is shown 
in Fig.2, which contains two deep neural networks, the 
generator G and the discriminator D, respectively. The 
task of the generator is to continuously learn the 
distribution of real samples and generate sample data that 
can deceive the discriminator. The task of the 
discriminator is to distinguish whether the generated data 
are real samples. The two are trained in alternating turns 
to compete with each other. Over time, the generator 
reaches a Nash equilibrium, enabling it to generate 
samples that closely resemble the actual distribution. 

 

 
 

Fig.2 Model structure diagram of GAN 
 

GAN is a prerequisite for understanding the CGAN 
mechanism. We assume that the real sample is x , the 
distribution of the real sample is ( )dataP x , and an arbitrary 
noise vector z  obeying the a priori noise distribution 

( )zP z  is fed into the generator G. G generates the fake 
sample ( )G z  by learning the mapping relation between 

( )zP z  and ( )dataP x . The discriminator D evaluates the 
real sample x  and the generated sample ( )G z . The 
outputting, ( )D x and ( ( ))D G z , is the probability of 
whether they are real samples. 
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The objective function of GAN is shown in Eq.2, and 
its optimization process can be summarized as a 
"Twoplayer minimax game" problem. G and D  are 
trained in synchronized alternation: (1) During the 
training of G, we expect D to generate new samples 
closest to the actual distribution. Therefore, the 
probability that D determines the fake sample as the real 
sample should be as large as possible, which means 

( ( ))D G z  and 1 ( ( ))D G z−  should approach 1 and 0, 
respectively. (2) During the training of D, we aim for the 
likelihood of D identifying the generated samples as real 
to be minimized. This means that ( ( ))D G z  should 
approach 0 while 1 ( ( ))D G z−  should approach 1. 
Meanwhile, the probability that D determines the real 
sample correctly should be as large as possible, 
converging to 1. Thus the training goal of the 
discriminator is to make the objective function as large as 
possible. 
1.2.2 CGAN model 

The training method of GAN is unsupervised 
learning, generating samples that are hard to control and 
unpredictable. In contrast, CGAN inputs conditional 
information into G and D and can realize the control of 
data generation patterns. The structure of its model is 
shown in Fig.3. In the CGAN model, we use the category 
label y  as conditional information. CGAN is trained to 
generate virtual samples based on specified labels. 
Specifically, G first takes arbitrary noise vector z  and 
category label y  as inputs. G then generates fake 
samples ( )G z  by learning the mapping relation between 
the noisy prior distribution ( )zP z  and the conditional 
distribution ( | )P x y . Finally, D discriminates between 
the true sample x  and the generated sample ( )G z  and 
outputs the probability that they are real samples, i.e., 

( )D x  and ( ( | ))D G z y . 
 

 
 

Fig.3 Model structure diagram of CGAN 
 

As is shown in Eq.3, the objective function of CGAN 
is very similar to that of GAN, with the difference that the 
optimization process of CGAN is a “Twoplayer minimax 
game” problem with conditional probabilities. The 
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labeling condition allows G to generate samples with 
specific labels from the noise. Only the generated sample 
is realistic enough and matches the label can it pass the 
discriminator. 
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In the proposed CGAN, both the generator and 
discriminator use a 3-layer feed-forward neural 
network structure, as shown in Fig.4. We chose ReLU 
and SGD as the activation function and the optimizer. 
The initial random noise dimension is set to 32, the 
learning rate is set to 0.0005, and the batch size is 128, 
as shown in Table 1. 
 

Tabel 1 Hyparameters of CGAN 

Parameter G D 

Activation function ReLU ReLU 

Optimizer SGD SGD 

Initial random noise dimension 32 / 

Learning rate 0.0005 0.0005 

Batch size 128 128 

Layers 3 3 

Layer 1 neurons 64 128 

Layer 2 neurons 96 96 

Layer 3 neurons 128 64 

 

 
 

Fig.4 Structural parameters of the generator and the discriminator: 
(a) Structure of the generator, (b) Structure of the discriminator 

1.3 E-GraphSAGE classification 
The flow of the E-GraphSAGE model is shown in 

Fig.5, which mainly includes three parts: the construction 
of communication interaction graph, edge embedding, 
and edge classification. 
1.3.1 Traffic graph construction 

Currently, intrusion detection models rely heavily on 
network data traffic. This type of data includes 
information such as source/destination IP address and port 
number, as well as packet, protocol, byte, and other traffic 
features. Source/destination IP addresses and port 
numbers, as location features, are well-suited for defining 
nodes for traffic graphs. As a result, during the construction 
of the traffic graph, we use the combination of source IP 
and source port and the combination of destination IP and 
destination port as the source and destination nodes of the 
graph. Meanwhile, the traffic feature information serves as 
edge features between the source and destination nodes. 
For example, the source node (149.171.126.18:47439) and 
the destination node (175.45.176.1:53) communicate, and 
the traffic information generated from the interaction is the 
edge feature. 

Moreover, only some destination IP addresses are 
used as attack nodes in common NID datasets. 
Consequently, in order to avoid the IP address becoming a 
critical feature for model training, we mapped source IP 
addresses to a random address in the range of 172.16.0.1‒ 
172.31.0.1. 
1.3.2 Edge embedding 

Traffic features in the NID dataset are only available 
as edge features in the graph, not node features. Therefore, 
the node features are initialized as all-1 vectors with 

{1,1, ,1}vx = ⋅ ⋅⋅ , and the vector dimensions are the same as 
the number of edge features. The neighborhood 
aggregation function in edge embedding is shown in Eq.4. 
It aggregates edge features of sampled neighborhoods at 
layer 1k −  to nodes v  creating aggregated embeddings 
of the sampled neighborhood at the k -th layer ( )

k
N vh . 

From Eq.5, the aggregated embedding of the k -th layer 
is merged with the node embeddings of layer 1k −  and 
multiplied with the trainable weight matrix. The node 
embedding of the k -th layer is finally obtained through 
the nonlinear activation function. At depth K , the final 
edge embedding can be obtained by connecting the node 
embedding zK

μ  of node u  and the node embedding zK
v  

of node v , as shown in Eq.6. 
 1

( ) AGG ({ , ( ), })k k
N v k uvh e u N v uv−← ∀ ∈ ∈E  (4) 

 1
( )( CONCAT( , ))k k k k

v v N vh W h hσ −← ⋅  (5) 

 ( )z z ,z ,K K K
uv u vCONCAT uv= ∈E  (6) 

In Eq.4, 1k
uve −  are the features of edge from ( )N v , 

the sampled neighborhood of node v, at layer 
{ }( ),u v uv∀ ∈ ∈N E  denotes the set of sampled edges in 
the neighborhood. 
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Fig.5 Flow chart of E-GraphSAGE 
 

Specifically, the model uses a typical two-layer 
convolutional structure (K=2) and mean function as the 
aggregation function, as shown in Eq.7. The sampled 
neighborhood size is set to 8, and the node embedding 
dimension is set to 64. We chose the ReLU and Adam as 
the nonlinear activation function and optimizer, 
respectively, with the learning rate set to 0.01, as shown in 
Tabel 2. 
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In Eq.7, | ( ) |eN v  is the number of edges in the 
sampled neighborhood, and 1k

uve −  is the edge features of 
the layer 1k − . 

 
Tabel 2 Hyparameters of E-GraphSAGE 

Parameter E-GraphSAGE 

Convolutional layers 2 

Aggregation function Mean function 

Sampled neighborhood size 8 

Node embedding dimension 64 

Activation function ReLU 

Optimizer Adam 

Learning rate 0.01 
 

2 Experimental environment and 
evaluation basis 

The study was conducted on a personal computer 
platform with the configuration shown in Table 3. 

 
Tabel 3 Experimental platform 

Project Configuration 

Operation system Windows 11 

CPU Intel (R) Core (TM) i5-12600KF 3.70 GHz

GPU NVIDIA 3070 8G 

Memory 32G 

Frame Pytorch 
 

2.1 The benchmark datasets 
The UNSW-NB15 dataset[22] is an open dataset 

released by the Network Security Laboratory (NSL) at the 
University of New South Wales (UNSW), Australia, for 
network intrusion detection research. The dataset includes 
nine types of attack traffic and one type of normal traffic. 

It is hard to construct traffic interaction graphs 
because the officially partitioned training and testing set 
do not contain location features. Therefore, we sampled 
four files, UNSW-NB15_1.csv, UNSW-NB15_2.csv, 
UNSW-NB15_3.csv, and UNSW-NB15_4.csv, containing 

 
 

Tabel 4 Partition of the training and testing sets 

Category Description 
Data 

Train Test 

Attack 

Analysis Different attacks of port scan, spam and html files penetrations. 2,000 677 

Backdoor Access bypassing system security mechanisms. 1,746 583 

Dos Temporary service interruption of a host connected to the Internet. 12,264 4,089 

Exploits Vulnerability attacks in operating systems or software. 33,393 11,132 

Fuzzers Application suspension due to massive random data feeds. 18,184 6,062 

Generic Attack against all blockciphers. 40,000 18,871 

Reconnaissance Strikes that can simulate attacks that gather information. 10,491 3,496 

Shell Code The payload code in the exploitation of software vulnerability. 1,133 378 

Worms Attacker replicates itself and spreads to other computers. 130 44 

Normal Normal connection. 56,000 37,000 

Total  175,341 82,332 
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the complete traffic data and partitioned the training set 
and testing set according to the ratio of 7:3. The specific 
partition is shown in Table 4. 

2.2 Evaluation metrics 
We used four metrics: accuracy, precision, recall, and 

F1-score, to evaluate the binary classification 
performance of the method. These metrics are calculated 
based on a confusion matrix, as shown in Table 5. In the 
NID task, TP denotes the number of attack samples the 
model correctly predicts as attacks. FP denotes the 
number of normal samples the model incorrectly predicts 
as attacks. TN denotes the number of normal samples 
correctly predicted as normal. FN denotes the number of 
attack samples incorrectly predicted as normal. The sum 
of TP, TN, FP, and FN is the total sample size. 

 
Tabel 5 Definition of confusion matrix 

 Predicted Attack Predicted Normal 
Actual Attack TN FP 
Actual Normal FN TP 
 

Accuracy is defined as the percentage of attack 
samples correctly classified out of the total samples, as 
shown in Eq.8. It provides an overall performance 
assessment of the model. However, in the case of sample 
imbalance, accuracy is not the best measure of model 
performance. It must be combined with other metrics such 
as precision, recall, and F1-score to be evaluated 
comprehensively. 

 TP TNAccuracy
TP TN FP FN

+=
+ + +

 (8) 

Precision is defined as attack samples correctly 
predicted out of the total predicted samples, as shown in 
Eq.9. It can measure the ability of models to identify 
attacks. 

 TPPrecision
TP FP

=
+

 (9) 

Recall is defined as the percentage of attack samples 
correctly predicted out of all attack samples, as shown in 
Eq.10. It can measure  the ability of models to find all 
attacks. 

 TPRecall
TP FN

=
+

 (10) 

The F1-score is defined as the reconciled mean of 
precision and recall, as shown in Eq.11. It is a 
comprehensive metric to evaluate the performance of the 
intrusion detection model.  

 21 R PF
R P
× ×=

+
 (11) 

In Eq.11, R  is Recall and P  is Precision. 
Weighted metrics are more effective in evaluating 

NID performance when there is a sample imbalance. As a 
result, the four metrics: accuracy, weighted precision, 
weighted recall, and weighted F1-score, are used to 
evaluate the multi-classification performance of the 
method. Weighting factors are set to category proportions. 

3 Experimental validation and 
analysis of GMCE-GraphSAGE 
performance 

The main purpose of binary classification is to 
determine whether the traffic is abnormal, which is the 
first task of NID. Once abnormal traffic is detected, the 
second task of NID is to identify the attack type using 
multi-classification. From it, NID can perform the 
appropriate defenses against different attacks. Therefore, 
we verify the performance of GMCE-GraphSAGE in both 
binary and multi-classification tasks with the help of two 
tools: t-distributed stochastic neighbor embedding 
(T-SNE) and ablation experiments. 

3.1 Normalization performance analysis 
Min-Max, Robust, and Standard are common 

normalization methods in NID. We use E-GraphSAGE as 
a benchmark model to compare the performance of 
gaussian mapping normalization with the above three 
methods in the classification task on the UNSW-NB15 
dataset. As can be seen in Fig.6(a), normalization did not 
have a significant effect on the binary classification. 
However, CE-GraphSAGE with gaussian normalization 
performs best in all four methods, as shown in Fig.6(b). 
Its accuracy, precision, recall, and F1-score achieved 
88.74%, 88.65%, 88.74%, and 88.16% respectively.  

 

 
 

Fig.6 Classification results by different normalization methods: (a) 
Binary classification result, (b) Multi-classification result 
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We plotted the loss curves of the E-GraphSAGE 
model under different normalization methods, as shown 
in Fig.7. In the binary classification loss curve plot shown 
in Fig. 7(a), the GME-GraphSAGE model combined with 
Gaussian mapping normalization still achieves the lowest 
loss value despite the fact that the difference in the model 
loss convergence values for different preprocessing 
methods is only 0.005%. This indicates that the 
predictions of the model are closest to the true values. 

 

 
 

Fig.7 Loss curves of E-GraphSAGE model: (a) Binary loss curve, 
(b) Multi-loss curve 

 

In the multi-classification loss curve plot shown in 
Fig.7(b), the loss of the model combining gaussian 
normalization has converged to 0.347 at the first epoch. It 
draws a significant gap with the other three methods. It 
can be seen that the computational complexity of the 
model is reduced by gaussian mapping, which allows the 
model to converge quickly. 

From Fig.6, we can see that the E-GraphSAGE 
model has achieved a relatively excellent performance in 
the binary classification task, with all four evaluation 
metrics reaching over 99%. Multi-classification, as a 
second line of defense, also plays an important role in 
NID. Unfortunately, E-GraphSAGE does not perform 
well in such cases. As a result, we improved the model to 
enhance its accuracy in detecting multiple classes. In the 
subsequent analysis, we will mainly focus on the 
performance of our model in multi-classification. 

3.2 Data generation performance 
As can be seen in Table 4, UNSW-NB15 is a highly 

unbalanced dataset. The Worms, Shell Code, Backdoor, 
and Analysis categories have significantly fewer samples 
in the training set. In particular, the Worms category 
contains only 130 samples. In order to make the 
E-GraphSAGE model effective in extracting the critical 
features of the traffic data, we generated 19,000 minority 
class samples (among them: Worms: 6,000, Shell Code: 
3,000, Backdoor: 5,000, Analysis: 5,000) using the 
CGAN model proposed in Section 2.2. The balanced 
training set is then constructed. 

To demonstrate the data generation capability of the 
CGAN model more intuitively, we analyze it with the help 
of T-SNE, a non-linear dimensionality reduction 
algorithm. We can map high-dimensional data to a 
low-dimensional space to make features easier to 
visualize through this tool. The association degree 
between features and network behaviors can be observed 
from it. The clustering results for the original and 
CGAN-enhanced data are shown in Fig.8. 

 

 
 

Fig.8 T-SNE visualization of before and after CGAN 
enhancing results: (a) T-SNE visualization of original data, (b) 

T-SNE visualization of CGAN-enhanced data 
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As shown in Fig.8(a), the distribution of the original 
dataset is seriously imbalanced. There is no clear 
boundary between samples of different categories. It can 
be easily found that many of the Worms, Shell Code, 
Backdoor, and Analysis samples are mixed with samples 
from other categories. The number of these four 
minority-class samples was too small to be detected in the 
T-SNE, which is detrimental to the subsequent intrusion 
detection. 

There are distinct clusters of Worms, Shell Code, 
Backdoor, and Analysis in Fig.8(b). The generated 
minority class samples have similarities and maintain 
diversity with the original ones, which demonstrates the 
data generation capabilities of CGAN. However, we can 
see that the tiny samples from these four minority 
categories are still randomly distributed in the other 
categories, demonstrating that the method has some 
limits. 

In addition, from Fig. 8(a) and (b), we can see that 
the samples of Reconnaissance, Fuzzers, and Exploits 
categories are partially mixed together. This may be due 
to the high feature similarity of these three categories, 
which makes it difficult to distinguish them. Clustering 
tools alone cannot recognize these categories. At this time, 
a powerful means of key feature extraction becomes 
especially important. 

3.3 Feature extraction and classification 
performance 

E-GraphSAGE is a classification model which can 
extract edge features and topology information from the 
traffic graph. The model is trained with the balanced 
training set created by CGAN. At the same time, we 
performed an ablation study of GMCE-GraphSAGE to 
validate the effectiveness of each module. 

(1) E-GraphSAGE Only: We only used 
E-GraphSAGE module after Min-Max normalization 
preprocessing for intrusion detection to evaluate the 

classification performance of this module.  
(2) GME-GraphSAGE: The CGAN module is 

removed from the GMCE-GraphSAGE, which will 
evaluate the normalization ability of the gaussian 
mapping. 

(3) CE-GraphSAGE: We removed the GM module, 
and Min-Max normalization was used. Still, we kept the 
CGAN module and the E-GraphSAGE module, which 
will evaluate the generation capability of the CGAN 
module. The results of the ablation experiments for the 
binary classification task are shown in Table 6, the basic 
E-GraphSAGE model achieves 99.21% for all four 
evaluation metrics. Comparing models (1), (2), and (3), it 
can be seen that the performance metrics are slightly 
improved after GM and CGAN data enhancement. And 
GMCE-GraphSAGE achieved the best performance 
among the four models. This is because the edge features 
extracted by the E-GraphSAGE model are the key basis 
for distinguishing abnormal traffic from normal traffic. It 
has achieved quite excellent performance in binary 
classification tasks. Therefore the detection performance 
of the GMCE-GraphSAGE model combining GM and 
CGAN, although improved, is limited. 

The multi-classification results of the ablation study 
are shown in Table 7. It can be easily found that all the 
modules of GMCE-GraphSAGE exhibit excellent 
performance. A comparison of models (2) and (1) shows 
that GM can maximize the data quality and reduce the 
interference caused by unbalanced traffic feature weights 
to the classifier. This helps to improve the stability and 
detection performance of the classifier. From the 
comparison between model (3) and model (1), it can be 
seen that model (3) achieves excellent detection 
performance despite the lack of GM preprocessing. This 
is due to the powerful data generation capability of the 
CGAN model. The generated samples are close enough to 
the real distribution to improve the minority class 
detection accuracy effectively. 

 
Table 6 Ablation experiment result of binary classification 

Model Accuracy (%) Precision (%) Recall (%) F1 (%) 

GMCE-GraphSAGE 99.36 99.37 99.36 99.36 

(1) E-GraphSAGE 99.21 99.22 99.21 99.21 

(2) GME-GraphSAGE 99.34 99.35 99.34 99.34 

(3) CE-GraphSAGE 99.35 99.36 99.35 99.35 

 
Table 7 Ablation experiment result of multi-classification 

Model Accuracy (%) weighted-Precision (%) weighted-Recall (%) weighted-F1 (%) 

GMCE-GraphSAGE 89.39 90.28 89.39 89.37 

(1) E-GraphSAGE 87.48 87.92 87.48 87.31 

(2) GME-GraphSAGE 88.74 88.65 88.74 88.16 

(3) CE-GraphSAGE 88.51 89.27 88.51 88.58 
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The modules work together to form the 
GMCE-GraphSAGE model, and optimal detection 
performance is obtained. As can be seen from the ablation 
experiments, it is because of the data generation and 
global traffic feature extraction that our method performs 
so well. This shows that GMCE-GraphSAGE has great 
detection potential and can guard the second line of 
defense for intrusion detection. 

3.4 Discussion and additional comparison 
To validate the detection performance of the 

GMCE-GraphSAGE model, we compare the detection 
results with several state-of-the-art NID methods. Among 
them are ML-based methods (NB, KNN), DL-based 
methods (DNN, CNN-BiLSTM), DL-based methods 
combined with data augmentation (ADSYN-CNN, 
VAEGAN-CNN) and advanced methods (IGRF-RFE, 
LOGNN, E-GraphSAGE). According to the comparison 
results in Table 8, our model achieved the best results. Its 
accuracy, precision, recall, and F1-score achieved 89.39%, 
90.28%, 89.39%, and 89.37%, respectively. 

From the perspective of classification performance, 
NB, KNN, and DNN do not perform well on all 
evaluation metrics (< 70%). It is indicated that traditional 
ML methods and shallow neural networks are no longer 
suitable for intrusion detection in such a complex network 
environment. The hybrid neural network CNN-BiLSTM 
has certain advantages in extracting temporal and spatial 
features. However, the features it extracts are of a single 
link, and the lack of global network information limits its 
detection performance to a large extent. In contrast, the 
classification of the proposed GMCE-GraphSAGE model 
is on the basis of global behavioral information and traffic 
features. Thus the great detection performance is 
obtained. 

From the perspective of data generation, although 
ADSYN-CNN achieved the best recall (94.65%), its 
precision was low (77.76%). This is probably due to the 
fact that ADSYN is very sensitive to outliers, enabling 
CNN to accurately find specific attacks. The high 
sensitivity is also a limitation for the classifier to 
recognize attacks, resulting in low precision. VAEGAN 
combines the advantages of VAE and GAN. Although it 
can learn sample distributions for data generation, it does 
not perform well with unbalanced data distributions. It is 
probably because VAEGAN prefers to generate samples 
more easily accepted by the discriminator during training. 
It is implied that there is a significant lack of generated 
samples for the minority class. In contrast, our CGAN 
model can learn the real distribution of traffic and 
generate minority class samples based on specified labels. 
It is an effective solution for data imbalance problems. 

In addition, our model is compared with current 
advanced models. IGRF-RFE selects the optimal subset 
of features for classification by combining Information 
Gain and Random Forest methods. However, it is well 
known that feature selection is an effective strategy to 
enhance algorithms based on ML. We are skeptical about 
whether it is effective for DL-based NIDs. The logarithm 
neuron (LOGN) is designed to improve the capability of 
the LOGNN model in data feature extraction. However, 
the model has a severe drawback: If not combined with a 
specifically designed anti-gradient vanishing loss 
function (AGLF), the gradient vanishing problem will 
cause the model to fail and collapse. It is difficult to be 
widely used in NID. E-GraphSAGE, which utilizes 
graphs for anomaly detection, is one of the most advanced 
NID schemes. Based on this, our GMCE-GraphSAGE 
adds GM and CGAN data enhancement, achieving the 
highest performance in most metrics. 

 
Table 8 Comparison mult-classification results (%) of different detection models 

Model Accuracy (%) weighted-Precision (%) weighted-Recall (%) weighted-F1 (%) 

NB[23] 43.7 57.9 43.7 39.6 

KNN[23] 62.2 57.8 62.2 57.6 

DNN[23] 64.5 61.4 64.5 58.6 

CNN-BiLSTM[24] 83.18 83.18 83.70 81.19 

ADSYN-CNN[24] 82.15 77.76 94.65 85.38 

VAEGAN-CNN[25] 86.65 87.79 86.65 85.41 

IGRF-RFE[26] 84.24 83.60 84.24 82.85 

LOGNN[27] 85.70 85.40 85.70 85.50 

E-GraphSAGE 87.48 87.92 87.48 87.31 

GMCE-GraphSAGE 89.39 90.28 89.39 89.37 
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4 Conclusion and future work 
In this paper, a novel NID method called 

GMCE-GraphSAGE was proposed, which can effectively 
improve the imbalance problem with high detection 
accuracy. In GMCE-GraphSAGE, we designed a suitable 
data preprocessing approach to map the traffic features 
into the gaussian domain. In this way, the subsequent 
model can fully learn the features of minority class 
samples. Our CGAN model can learn the real distribution 
of traffic and generate minority class samples based on 
specified labels. In addition, the proposed E-GraphSAGE 
model is able to capture topological information and edge 
features of the traffic graph. It is a solid foundation for 
classifying and detecting. Thus, excellent detection 
performance is obtained especially in multi-classification. 

To validate the detection performance of 
GMCE-GraphSAGE, we performed a series of 
experiments on the UNSW-NB15 dataset with the help of 
T-SNE and ablation studies. In the binary-classification 
task, the proposed method achieved 99.36%, 99.37%, 
99.36%, and 99.36% in accuracy, precision, recall, and 
F1-score, respectively. In the multi-classification task, the 
proposed method achieved 89.39%, 90.28%, 89.39%, and 
89.37% in accuracy, weighted-precision, weighted-recall, 
and weighted-F1-score, respectively. Compared with 
other methods, GMCE-GraphSAGE has been found to 
have significant advantages. It is an effective solution for 
NID. 

However, GMCE-GraphSAGE also has the 
following drawbacks. On the one hand, 
GMCE-GraphSAGE has limited learning ability for 
minority class training samples. Although the intrusion 
detection performance is improved to some extent, the 
detection accuracy is still poor. Therefore, we will further 
focus on adding a probabilistic model to DGM to learn the 
distributional properties of the traffic thoroughly. This 
helps generate diverse samples and improves the 
performance and robustness of NID. 

On the other hand, even if the data enhancement 
algorithm is used, it is not effective at improving detection 
when the minority samples are few. Our next research will 
focus on exploring the intrinsic physical correlation 
between intrusion and features. By utilizing DL and 
existing feature mining techniques, we will further 
investigate and analyze more significant feature relations 
based on the network protocol from the source to enhance 
the detection performance. 
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