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Abstract: In the field of image denoising, deep learning technology holds a dominance. However, 
the current network model tends to lose fine-grained information with the depth of the network. 
To address this issue, this paper proposes a Multi-scale Attention Dilated Residual Image 
Denoising Network (MADRNet) based on skip connection, which consists of Dense Interval 
Transmission Block(DTB), Sparse Residual Block(SRB), Dilated Residual Attention Reconstruction 
Block(DRAB) and Noise Extraction Block(NEB). The DTB enhances the classical dense layer by 
reducing information redundancy and extracting more accurate feature information. Meanwhile, 
SRB improves feature information exchange and model generalization through the use of sparse 
mechanism and skip connection strategy with different expansion factors. The NEB is primarily 
responsible for extracting and estimating noise. Its output, together with that of the sparse 
residual module, acts on the DRAB to effectively prevent loss of shallow feature information and 
improve denoising effect. Furthermore, the DRAB integrates an dilated residual block into an 
attention mechanism to extract hidden noise information while using residual learning technology 
to reconstruct clear images. We respectively examined the performance of MADRNet in gray 
image denoising, color image denoising and real image denoising. The experiment results 
demonstrate that proposed network outperforms some excellent image denoising network in 
terms of peak signal-to-noise ratio, structural similarity index measurement and denoising time. 
The proposed network effectively addresses issues associated with the loss of detail information. 
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0 Introduction 
The rapid development of computer science and 

technology has led to the widespread application of 
image processing technology in various fields such as 
remote sensing, transportation, military, and artificial 
intelligence. However, due to limitations in sensor quality 
and environmental conditions, noise is often introduced 
during the image capture process[1]. The objective of image 
denoising is to restore the original detailed information 
from noisy images, which poses a significant challenge. In 
the denoising process, it is essential not only to enhance the 
overall visual quality of the image but also to preserve its 
fine edges and features. Therefore, within the domain of 

image processing, image denoising technology represents a 
critical area for research[2]. 

Currently, image denoising technology is primarily 
categorized into model-based denoising methods and 
image denoising methods based on deep learning. 
Model-based image denoising algorithms are further 
classified into spatial domain methods, variation domain 
methods, and sparsity methods[3]. The non-local means 
algorithm (NLM) explores the non-local average of all 
pixels in an image and preserves edge information in the 
transform domain using self-similar patches[4]. The block 
method of 3 dimension (BM3D)[5] searches for similar 
blocks in the image and then utilizes the NLM algorithm 
of 3D transformation to remove noise. Weighted Nuclear  
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Norm Minimization[6] (WNNM) enhances the denoising 
effect by leveraging prior knowledge and sparsity method. 
While these approaches have yielded promising results, 
most traditional methods encounter challenges such as 
slow processing speed and manual parameter adjustment, 
making them unsuitable for real-time data applications. 

Currently, convolutional neural networks (CNNs) 
hold a dominance in the field of image denoising. Most 
deep learning methods generate a noise map and then 
reconstruct a clear image by subtracting this noise map, 
focusing on noise learning and image recovery. Zhang et 
al[7]. introduced a residual learning CNN model 
(DnCNN), which utilizes the residual learning method to 
extract Gaussian noise features. Experimental results 
demonstrate that DnCNN exhibits robustness and 
effective denoising capabilities. Additionally, Kai Zhang 
et al. proposes the fast and efficient CNN model[8] 
(FFDNet) which enhances the DnCNN model by 
incorporating an adjustable noise level image as input, 
showing competitive performance in real image 
denoising. Furthermore, Tian et al[9]. Propose Enhanced 
CNN for Image Denoising (ECNDNet) which employs 
extended convolution to increase receptive fields and 
obtain accurate noise features. While Convolutional 
Blind Denoising Network[10] (CBDNet) combines noise 
estimation subnetwork with non-blind denoising network 
to improve generalization ability of the FFDNet for 
removing complex noises. 

With the increase of network depth, there will also 
be a corresponding increase in the number of parameters 
and denoising time, which may result in overfitting and 
hinder practical application. The connection between 
deep and shallow layers will gradually weaken, leading 
to loss of details and hindering model denoising. 
Gaussian noise features are very similar to images with 
complex backgrounds, which can generate difficulty in 
noise extraction. 

To address this problem, numerous scholars have 
proposed models with robust generalization and 
expressive capabilities. Tian et al[11]. developed an 
effective Attention-Guided Dilated Network (ADNet), 
which incorporates a sparse mechanism comprising 
dilated convolution and ordinary convolution to enhance 
performance and efficiency. Zhong et al[12]. introduced 
the Dense Residual Feature Extraction Network 
(DRFENet), which enhances ADNet by introducing skip 
connection and interval transfer strategies, resulting in 
outstanding generalization capabilities. 

A multi-scale attentional dilated residual network 
(MADRNet) with skip connections is proposed in this 
paper to address the issue of potential loss of detailed 
information during the processing of noise in deep 
learning image denoising technology. The contributions 
of this paper are as follows: 

1. We propose an interval transmission strategy 
based on skip connection, which is applied to DTB and 
significantly enhances noise feature extraction and 
information exchange between the upper and lower 

layers of the model. 
2. In SRB, we introduce a strategy that combines 

extended convolution and skip join to enlarge the 
acceptance field, better distinguish noise from complex 
background, and obtain more detailed information 
through jump connections. 

3. A noise extraction block is introduced to pay full 
attention to global similarity information of images by 
expanding convolution, using average pooling to smooth 
and suppress noise for improved network performance. 
The use of skip connection strategy ensures effective 
transmission of context information and improves model 
efficiency. 

4. Our proposed attention mechanism includes DRB, 
where we combine convolution with dilated convolution 
to expand the receptive field, make it focus more on 
local and global features of the image, address grid effect 
caused by dilated convolution, thus further improving 
denoising performance. 

In Section 1, we introduce some related works, 
including the skip connections, dilated convolution, 
attention mechanism, and sparse mechanism. In Section 
2, we expound the proposed model MADRNet in detail. 
In Section 3, we present the experimental data and 
results of MADRNet. In Section 4, we provide the 
summary and prospect. 

1 Related Work 

1.1 Attention mechanism and sparse mechanism 
1.1.1. Attention mechanism 

Complex backgrounds can complicate the function 
of image and video applications, making training more 
challenging. To address the issue, attention mechanism 
has been introduced into the model. Currently, common 
attention mechanisms used in convolutional neural 
networks include channel attention, spatial attention, and 
mixed attention. The typical model for the channel 
attention mechanism is SENet[13], which involves two 
processes: squeeze and excitation. The squeeze process 
condenses global information and learns the significance 
of each channel in the channel dimension. The excitation 
process integrates the condensed features into the fully 
connected layer to predict the importance of each 
channel. The classical model for spatial attention 
mechanism is STNet, which can transform various 
spatial deformation data and automatically capture 
features of important regions. The hybrid attention 
mechanism combines both channel attention and spatial 
attention, with CBAM being a representative model for 
this approach. It effectively extracts important information 
from feature maps to enhance the expressiveness and 
generalization ability of the model. 
1.1.2. Sparse mechanism 

The sparse mechanism utilizes a combination of 
ordinary convolution and dilated convolution by 
alternating ways to create a hybrid convolution, 
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effectively restraining the unique raster effect of dilated 
convolution. This effect arises from not all pixels 
participating in the convolution operation, leading to 
discontinuities of the feature map. The adoption of the 
hybrid convolution strategy allows for more continuous 
extraction of feature information at each layer. While the 
3×3 convolution kernel is limited to extracting local 
features, this design not only preserves detailed spatial 
information but also effectively prevents discontinuities 
of the feature extraction. 

1.2 Dilated convolution 
The process of image denoising is a complex one, 

involving the interrelation and interaction between 
contiguous pixels. In this process, the extraction of 
context information plays a crucial role, making it 
essential to expand the receptive field. Currently, there 
are two methods for enlarging the receptive field. The 
first involves increasing the depth of the network or 
expanding the size of the convolution kernel, but this 
results in an increase in model parameters, memory 
usage, and training difficulty. The second method 
utilizes dilated convolution which enlarges the 
receptive field without adding more parameters[14]. As a 
result, dilated convolution can extract richer feature 
information while striking a balance between model 
stability and complexity. Trung et al.[15] successfully 
applied dilated convolution to medical image denoising 
and successfully achieved clearer CT images, providing 
convenience to the medical industry. Therefore, this 
paper introduces dilated convolution as a means to 
enhance image denoising effectiveness. 

1.3 Skip connection 
The principle of skip connection is to directly add 

input data to the output of a specific layer, ensuring the 
uninterrupted flow of information while preserving the 
details of the input image. This structure employs an 
asymptotic reuse strategy to extract more contextual 
information. Wu et al.[16] introduced skip connection into 
the model, enhancing the robustness and expressiveness of 
model while extracting more detailed information. The skip 
connection method offers several advantages: effectively 
alleviating the problem of gradient disappearance and 
improving model robustness; utilizing a feature reuse 
strategy to extract more significant context information; 
significantly reducing the number of parameters and 
reducing model training difficulty; ensuring that the 
network can be extended to deeper levels.[17]  

2 Proposed Model Construction 
The MADRNet utilizes the skip connections, dilated 

convolutions, sparse mechanisms, and attention 
mechanisms while employing an end-to-end residual 
learning approach. This means that the input is a noisy 
image and the output is a clear image. The structure can 
be seen in Fig.1. The network parameters of the 
MADRNet are presented in Table 1. The parameters of 
each convolution within the table adhere to the logical 
sequence of operation of the block. 

 

 

 
Fig.1 Architecture of MADRNet network 
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Table 1 The parameters of the MADRNet network 
Block Kernel size Dilation Stride Padding Channel Pooling 

DTB 

3×3 1 1 1 32  
3×3 2 1 2 32  
3×3 1 1 1 32  
3×3 2 1 2 32  
3×3 1 1 1 32  
3×3 2 1 2 64  

NEB 

3×3 1 1 1 32  
     Avgpool(2×2) 

3×3 1 1 1 32  
3×3 2 1 2 32  
3×3 1 1 1 32  
3×3 1 1 1 32  
3×3 1 1 1 32  
3×3 1 1 1 64  

SRB 

3×3 1 1 1 64  
3×3 2 1 2 64  
3×3 2 1 2 64  
3×3 1 1 1 64  
3×3 2 1 2 64  
3×3 2 1 2 64  
3×3 1 1 1 64  

F(0) 3×3 1 1 1 1  

DRB 

3×3 1 1 1 32  
3×3 2 1 2 32  
3×3 1 1 1 32  
3×3 1 1 1 32  
3×3 1 1 1 1  

F(1) 1×1 1 1 1 1  
 

The proposed MADRNet combines with MTB, NEB, 
SRB, and DRAB. The denoising mechanism of the 
network involves strengthening the learning of noise 
feature information through the dense interval 
transmission block and the sparse residual block, 
followed by extracting basic noise information through 
the noise extraction block[18]. Subsequently, the output of 
these blocks collaborates with the dilated residual 
attention reconstruction module to extract feature 
information with higher relevance, ultimately utilizing 
residual learning to reconstruct a clear image. The output 
of the network is 
 ( )N MADRNet Ny X F X= −  (1) 
Where y denotes clear image, XN denotes input image, 
FMADRNet(XN) denotes noise map image. 

2.1 Dense interval transmission block 
The skip connection simplifies deep information 

transmission and enhances noise expression, thereby 
improving the denoising effect. Due to the presence of 
numerous skip connections in the dense layer, dense 
connection block is incorporated into the model. The 
dense connection block offers several advantages, 
including facilitating back propagation, reducing the 

number of parameters, compacting the network structure, 
and enhancing model expressiveness. This structure 
improves feature information extraction by reusing the 
output of each convolutional layer. However, it also has 
limitations. For instance, reusing all features can cause 
the deep network to process large amounts of useless 
information. 

Based on the DenseNet[19] network structure, this 
paper introduces a dense interval transmission block. The 
interval transmission strategy of skip connection is 
employed in dense interal transmission block, which can 
extract more valuable information and reduce parameter 
redundancy. The structure is illustrated in Fig.2. Within 
the block, CBR denotes Convolution+BN+Relu, while 
DCBR represents Dilated convolution+BN+Relu. 
Through interval transmission, this structure not only 
preserves the fundamental advantages of classical dense 
layers but also effectively diminishes parameter 
redundancy. Specifically, the block not only enlarges the 
receptive field but also significantly reduces parameter 
count by alternating between convolution and dilated 
convolution, thereby more effectively emphasizing key 
features within the network. The DTB can be expressed 
in Equation (2). The details of the DTB are expressed in 
Equation (3). 
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Fig.2 Dense interval transmission block 
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Where FDTB, ODTB, FCBR, FDCBR, Cat, O(1,2,3,4,5,6) 
denote the function of the DTB, the output of the DTB, 
the function of CBR, the function of DCBR, the skip 
connection, the ouput of each layer, respectively 

2.2 Sparse residual block 
Considering that the sparse mechanism can extract 

more abundant spatial features from images, the shallow 
layer of a convolutional neural network typically 
represents low-level features, while the deep layer 
represents high-level features. As the network layers 
deepen, the extracted features become more accurate, but 
there is also a risk of losing context information. 
Therefore, this paper proposes the skip sparse block. In 
this block, the strategy of combining extended 
convolution and skip connection is utilized, enabling the 
model to acquire more detailed information. 

The sparse residual block proposed in this paper 
incorporates three skip connections into the sparse 
mechanism, and introduces skip connection to the dilated 
convolution. Dilated convolution can obtain a wider 
receptive field, thus obtaining richer information and 
background. Therefore, it is very beneficial to adopt 
dilated convolution as the input of skip connections 
because it provides more information and the network 
structure and parameters remain the same[20]. 

The sparse residual block effectively mitigates the 
issue of gradient vanishing and enhances the propagation 
of feature information.The structure is depicted in Fig.3. 
SRB is shown in Equtation(4), the specific steps of SRB is 
shown in Equtation(5) and Equtation(6). 
 ( )CSB CSB DTBO F O=  (4) 
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Where FCSB, OCSB, FCBR, FDCBR, Cat, ODCBR(1,2,3,4,5,6) 
denote the function of the CSB, the output of the CSB, the 
function of CBR, the function of DCBR, the skip 
connection, the ouput of each layer, respectively. 

 

 
 

Fig.3 Sparse residual block 
 

2.3 Dilated residual attention construction block 
In order to address the issue of insufficient 

enhancement ability of attention mechanism features in 
the DRFENet model, this paper propose the Dilated 
Residual Attention Reconstruction Block(DRAB) which 
introduces an dilated residual block (DRB) for feature 
expression enhancement. The structure is depicted in 
Fig.4. The newly proposed dilated residual block can 
expand receptive field and encourage model denoising. 
Unlike the hybrid attention mechanism, the attention 
mechanism presented in this paper has a simpler 
structure but effectively improves noise reduction 
efficiency and quality. The Tanh activation function 
generally demonstrates a more rapid convergence 
compared to the Relu and Sigmoid activation function in 
the training process of neural networks, owing to its 
advantages such as output range, gradient attributes, and 
central symmetry. As a result, Tanh is adopted as the 
activation function in DRAB.  

Within the block, represents the multiplication of 
feature values. The convolution of 2C×1×1×C is used in 
the first layer of DRAB, where C is the number of 
channels in the noise image. The convolution is utilized in 
DRAB to derive weight information and extract 
significant noise from intricate backgrounds. Finally, the 
residual learning technology is used in DRAB to 
reconstract the clear image. DRAB is shown in 
Equtation(7). The concrete steps of DRAB is shown in 
Equtation(8). 
 1( , )DRAB DRAB NO F O X=  (7) 

          

1

1 1

( , )

( ( ( )))
NEB SRB

noise

DRAB N noise

O Cat O O

O O Conv Tanh DRB O
O X O

=

= ×
= −

 (8) 

Where FDRAB, ODRAB, Onoise, , noiseO ,O1, Cat, 
DRBdenote the function of the DRAB, the output of the 
DRAB, the output of noise, the fuse of NEB and SRB, the 
skip connection, the Dilated Residual Block, respectively. 
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Fig.4 Dilation residual attention reconstruciton block 
 

2.4 Noise extraction block 
In contrast to the noise estimation networks in 

CBDNet and VDN, we design the noise extraction block 
with 7 convolutional layers that effectively enlarges the 
receptive field and incorporates two skip connections to 
enhance details[16]. The output of NEB is combined with 
the SRB on the DRAB. The structure is depicted in Fig.5. 
The noise extraction block consists of Conv, Dconv, 
AvgPool, BN, Relu, and skip connection. The first four 
layers are dedicated to noise extraction while the last 
three layers focus on feature enhancement. Multiple skip 
connections are used to prevent gradient disappearance 
and explosion, ultimately improving network antagonism 
and robustness.NEB is shown in Equtation(9). 
 ( )NEB NEB NO F X=  (9) 
Where FNEB, ONEB, XN denote the function of the NEB, 
the output of the NEB, the noise image. 

2.5 Loss function 
The absolute value error (MAE) and mean square 

error (MSE) are the two most commonly utilized loss 
functions in the field of image processing. In the realm of 
image denoising, MAE represents the absolute difference 
between the residual image and noise. MSE is calculated 
as the mean of the sum of squares of the differences 
between residual image and the noise, effectively 
capturing the average feature weight[21]. 

The formulas for MAE and MSE are as follows: 

 1 1
1 | ( , ) ( , ) |N M

i jMAE X i j Y i j
MN = =

= −   (10) 

 2
1 1

1 [ ( , ) ( , )]N M
i jMSE X i j Y i j

MN = == −   (11) 

We use MSE as the loss function to predict residual 
image. Before model training, it is necessary to process 
the data with noise. Noise image 

 N CX X σ= +  (12) 
Where XC, σdenote the clear image, noise level. 

The expression of loss function is as follows 

 2
1

1( , ) [ ( ) ]N
NnL b MASNet X

N
ω σ== −  (13) 

Where MASNet(XN), N, ω, b denote the residual image, 
the number of noise image blocks, weight, bias. 

We verify the advantages and disadvantages of 
MAE and MSE loss functions on the MADRNet model, 
and the results are shown in Table 2. 

3 Results and Discussions 
3.1 Evalution indicators 

We utilize peak signal-to-noise ratio (PSNR) and 
structural similarity index(SSIM)[22] as the evaluation 
principles for image denoising. It is necessary to 
compute the mean square error (MSE) before calculating 
PSNR. The formulas for MSE and PSNR are as follows: 

 
2

1010 log ( )MAXPSNR
MSE

= ×  (14) 

Where M, N, MAX denotes the size of image, and the max 
pixel of image. 

The structural similarity index is calculated based 
on the luminance, contrast, and structural similarity 
between two images. The formula for the structural 
similarity index is 

 1 2
2 2 2 2

1 2

(2 )(2 )
( , )

( )( )
x y xy

x y x y

c c
SSIM x y

c c
μ μ σ

μ μ σ σ
+ +

=
+ + + +

 (15) 

Where x, y denote the denoising image and clear image. μx, 
μy denote the mean of x and y. σx, σy denote the standard 
deviation of x and y. σxy denote the covariance of 
x and y .c1, c2denote constant. 

 

 
 

Fig.5 Noise extraction block 
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Table 2 Denoising performance of different  
loss function on BSD68 

Methods BSD68 
Noise level 25dB 50dB 

MAE 29.15 26.29 
MSE 29.27 26.35 

 

3.2 Datasets 
In order to verify the diversity of MADRNet model 

applications, this paper conducts experiments on gray 
image denoising, color image denoising, and real image 
denoising. The training sets for gray image denoising and 
color image denoising experiments include the Berkeley 
Segmentation Data Set (BSD) and Waterloo Exploration 
Database. The BSD training dataset consists of 400 
images with a size of 180×180, while the Waterloo 
Exploration Database includes 3859 images. For the gray 
image denoising experiment, noise intensities of 15dB, 
25 dB, and 50 dB are added. For color image denoising, 
we introduced for known noise levels(σ=15, 25, 35, 50). 
The noise training dataset is cropped to a size of 50×50 
with a step size of 40.The test datasets consist of BSD68 
and Set12 datasets for the gray image denoising 
experiment, CBSD68, Kodak24, and McMaster datasets 
for the color image denoising experiment. The noise 
generation method used in the test dataset is consistent 
with that used in the training dataset. 

For real image denoising experiments, this paper 
utilizes the Smartphone Image Denoising Data set (SIDD) 
as the training dataset. SIDD contains 320 pairs of real 
noisy images along with nearly noise-free images which 
are then cropped into sizes of 128×128. Additionally, 
SIDD validation Setand Darmstadt Noise Data Set (DND) 
datasets are selected as test datasets[23]. 

3.3 Experiment settings 
The MASNet model utilizes the ADAM optimizer 

with parameters 0.9 and 0.999, while setting the batch 
size to 64 and planning to train 70 epochs. The learning 
rate changes as follows: Our initial learning rate set 10–3 
at the first 20 epochs, then every 10 epochs eps was 
one-tenth of the previous one until reaching 10–8. Device 
information is listed in Table 3. 

 
Table 3 device imformation 

Device Name Device Information 
System Windows 11 
CPU Intel Core i9-11900K@3.50GHz 
GPU NVIDIA GeForce RTX 3090 

Memory 16 GB 
Language framework Anconda+Python3.9.18+Pytorch1.12.0

 

3.4 Experiments results 
In this chapter, we conduct ablation experiments to 

demonstrate the importance of each block. Then, we 

proceed with a comparison experiment to verify the 
denoising efficiency of MADRNet by comparing it with 
traditional image denoising algorithms and outstanding 
convolutional neural network models in gray image 
dataset, color image dataset, and real noise image dataset. 
The traditional image denoising algorithms include NLM 
algorithm and BM3D algorithm, while the algorithms 
based on convolutional neural networks consist of 
DnCNN, image restoration CNN (IRCNN)[24], image 
enhancement and denoising CNN (ECNDNet), ADNet, 
VDN[25] and dilated skip convolutional image denoising 
CNN (DRFENet). We add the same intensity of noise to 
all image denoising algorithms and evaluate them using 
the same training dataset and test dataset. 
3.4.1. Ablation experiment 

To assess the necessity of each block in the 
MADRNet model, we conducted a series of ablation 
experiments: (1) Remove the noise extraction block from 
MADRNet; (2) Remove the skip connection strategy in 
the noise extraction block; (3) Remove the shallow 
network structure DTB from MADRNet; (4) Remove the 
skip connection strategy from sparse residual block; (5) 
Remove the dilated residual block from the DRAB; (6) 
Remove the DTB and NEB from MADRNet; (7) 
Implement completely the MADRNet. To ensure 
experimental accuracy, all models were evaluated on 
DSB68 and Set12 datasets, consisting of 68 images and 
12 images, respectively. The average value of ten 
experiments was chosen as the experimental result, and 
the same noise map was utilized to attack the images in 
each batch of experiments. The experimental findings are 
presented in Table 4. 

 
Table 4 Average PSNR of ablation experiment  

when noise intensity is 25 dB 
Methods Set12 BSD68 

MADRNet without NEB 30.46248 29.19159

NEB without skip connection 30.52175 29.22284

MADRNet without DTB 30.21215 29.01259

SRB without skip connection 30.58612 29.28281

MADRNet without DRB 30.54215 29.24184

MADRNet without DTB and NEB 30.19259 29.00271

MADRNet 30.65312 29.33478
 

It can be discerned from Table 3 that upon the sole 
removal of DTB, the denoising performance of the 
model deteriorates significantly, indicating that DTB 
assumes the most fundamental and core role within the 
model. It can utilize the interval transfer strategy to 
establish connections among different layers and 
enhance the extraction of noise features. NEB can 
reinforce local feature information. SRB can enhance the 
perception capability between the upper and lower layers 
of the model. DRAB contributes to strengthening the 
noise separation of the model[26]. 

Fig.6 illustrates the comparison of ablation 
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experiment results, highlighting the significance of each 
block. In Fig.7, the change curve of average PSNR with 
the number of iterations is presented. It is evident from 
the figure that, except for ablation experiment 2, the 
models in other ablation experiments did not converge as 
the number of iterations increased. Although ablation 
experiment 2 converged, its denoising effect was not as 
effective as MADRNet. Therefore, based on the 
experimental results above, it can be concluded that 
removing the noise extraction block leads to insufficient 
shallow noise extraction, reduced global feature learning 
ability, and compromised model integrity. The removal 
of dense interval transmission block will result in 
significant information redundancy and weakened the 
generalization ability. Skip connections are crucial for 
contextual feature transfer and model robustness, their 
removal would interrupt these processes. Additionally, 
removing DRB diminishes the tail end capability of 
extracting significant information and weakens the 
inference ability of the model. When both DTB and NEB 
are eliminated, the model loses the most fundamental 
ability of extracting noise features and the efficiency of 
noise removal is significantly compromised. 
3.4.2. Gray image denoising 

We conducted gray image denoising experiments 
with three different noise intensities on the Set12 and 
BSD68 test datasets respectively. Table 5 presents the 
average PSNR and SSIM values of different denoising 
algorithms in the test dataset when noise intensities is 
15, 25, and 50 dB. The red marks indicate optimal data. 
Compared to the current advanced image denoising 
model DRFENet, our proposed model achieves a 
higher PSNR value by 0.16dB. Therefore, the model 
presented in this paper holds significant significance and 
demonstrates more reliable stability. 

Fig.8 illustrates the comparison of the Couple image 
results after applying different denoising algorithms at a 
noise intensity of 25dB. The red box highlights the 
selected local magnification, which is displayed in the 

 
 

 
 

Fig.6 Comparison of ablation experiment 
 
 

 
 

Fig.7 the curve of PSNR with the number of iterations 
 

Table 5 PSNR of different denoising algorithms on Set12 when noise intensity is 25 dB and 50 dB 
Datasets Methods σ=15dB σ=25dB σ=50dB 

Set12 

NLM 31.31/0.8851 28.27/0.8421 25.50/0.7594 

BM3D 32.46/0.8944 29.88/0.8501 26.65/0.7689 

DnCNN 32.87/0.9027 30.44/0.8617 27.20/0.7828 

IRCNN 32.71/0.8997 30.24/0.8587 27.01/0.7785 

ECNDNet 32.89/0.9034 30.45/0.8621 27.21/0.7831 

ADNet 32.94/0.9037 30.48/0.8631 27.29/0.7874 

DRFENet 32.98/0.9041 30.51/0.8639 27.31/0.7885 

Ours 33.14/0.9049 30.65/0.8647 27.44/0.7885 

BSD68 

NLM 29.98/0.8629 27.99/0.8024 25.12/0.6878 

BM3D 31.07/0.8720 28.55/0.8121 25.97/0.6968 

DnCNN 31.73/0.8901 29.19/0.8266 26.20/0.7184 

IRCNN 31.54/0.8878 29.04/0.8225 26.08/0.7115 

ECNDNet 31.75/0.8904 29.20/0.8278 26.21/0.7189 

ADNet 31.79/0.8909 29.22/0.8289 26.23/0.7202 

DRFENet 31.82/0.8911 29.23/0.8297 26.25/0.7230 

Ours 31.94/0.8919 29.33/0.8304 26.37/0.7236 
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Fig.8 Result of Boat image for different denoising algorithm when noise intensity is 25 dB 
 

lower right corner. It is evident that both NLM and 
BM3D algorithms exhibit poor denoising effects, 
particularly in processing edge information. In contrast, 
other deep learning image denoising algorithms 
outperform NLM and BM3D, delivering superior PSNR 
and better recovery of edge information with almost 
identical visual effects. Fig.9 depicts the comparison of 
Parrot image results after employing various denoising 
algorithms at the noise intensity of 50dB. The red box 
marks the selected local magnification, which is 
displayed in the right corner. 

The comparison of processing times for different 
denoising algorithms on the Set12 dataset is presented in 
Table 6. The experiment involves processing 12 images 
from the Set12 dataset and calculating the average 
processing time as the final result. It is evident from the 
table that the MASNet model outperforms other deep 
learning denoising algorithms in terms of image 
processing time, and it is comparable to traditional image 
denoising algorithms such as NLM and BM3D. The 
proposed model in this paper addresses image processing 
time primarily due to the introduction of the skip 

connection strategy and DTB. The interval transmission 
strategy employed in DTB enhances the extraction of noise 
features, effectively reduces the redundancy of parameters, 
and shortens the image processing time when combined 
with the hopping connection strategy in the network. 
3.4.3. Color image denoising 

Table 7 presents the comparative experiments on 
denoising color noise images using color datasets 
CBSD68, Kodak24, and McMaster. It is evident that 
MADRNet achieves superior denoising performance 
across all four noise levels, with an average PSNR 
improvement of 0.28 dB, 0.17dB, and 0.1dB compared 
to DnCNN, ADNet, and DRFENet respectively. This 
demonstrates the strong generalization ability of 
MADRNet in color image denoising by effectively 
extracting complex detail information and texture 
features from color noise images. 

Fig.10 illustrates the comparison of kodim23 
images in the Kodak24 dataset after being processed by 
different denoising algorithms at a noise intensity of 
25dB. The selected partial magnification is marked by 
the red box. 
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Fig.9 Result of Parrot image for different denoising algorithm when noise intensity is 50 dB 
 

Table 6 Comparison of average runtime 
Methods NLM BM3D DnCNN IRCNN ECNDNet ADNet BRDNet Ours 
Time/s 0.047 0.073 0.19 0.37 0.62 0.47 0.51 0.079 

 
Table 7 Average of PSNR for different denoising algorithms on CBSD68, Kodak24 and McMaster datasets 

Datesets Methods σ=15 dB σ=25 dB σ=35 dB σ=50 dB 

CBSD68 

CBM3D 33.41 30.71 28.90 27.35 
DnCNN 33.87 31.32 29.66 28.02 
IRCNN 33.77 31.19 29.47 27.89 
ADNet 33.99 31.31 29.66 28.07 

DRFENet 34.01 31.34 29.69 28.12 
Ours 34.14 31.47 29.78 28.19 

Kodak24 

CBM3D 34.22 31.68 29.90 28.46 
DnCNN 34.68 32.23 30.66 29.04 
IRCNN 34.51 32.02 30.43 28.79 
ADNet 34.77 32.27 30.69 29.11 

DRFENet 34.81 32.33 30.73 29.16 
Ours 34.92 32.42 30.85 29.21 

McMaster 

CBM3D 34.02 31.66 29.91 28.51 
DnCNN 34.78 32.44 30.89 29.23 
IRCNN 34.66 32.21 30.64 28.94 
ADNet 34.89 32.55 31.01 29.37 

DRFENet 35.01 32.66 31.06 29.49 
Ours 35.17 32.77 31.17 29.55 
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The outstanding results can be attributed to the 
network structure of MADRNet, which employs the skip 
connection strategy to extract more fine-grained features. 
At the shallow level, we have developed DTB to 
establish connections between different layers. The 
feature information obtained from DTB is then passed on 
to SRB, which captures a multitude of shallow features 
through mixed convolution and skip connection 
strategies. Simultaneously, NEB extracts and enhances 
the noise information extracted in the network.  
Furthermore, the feature information learned from these 
two scales is transmitted to DRAB. Through DRB and a 
lightweight attention mechanism, it effectively enhances 
the noise separation effect of the model[12]. 

3.4.4. Real image denoising 
To validate the robustness and accuracy of the new 

model, the real image denoising experiment was 
conducted. The results in Table 8 demonstrate the 
performance of different approaches on the SIDD 
validation set and DND. The new model exhibits 
superior PSNR and structural similarity index on SIDD, 
as well as the best PSNR on DND. 

Fig.11 illustrates the denoising outcomes of various 
models on the SIDD verification set. It is evident that 
noise has been effectively eliminated. In comparison 
with other models, our proposed model avoids excessive 
smoothing in local noisy areas while preserving intricate 
details. Consequently, this model of paper demonstrates 
commendable robustness and accuracy[27]. 

 

 
 

Fig.10 Result of kodim23 image for different denoising algorithm when noise intensity is 25 dB 
 

Table 8 Comparison of real image denoising experiments 
Test Data SIDD validation 
Methods CBDNet RIDNet VDN ADNet DRFENet Ours 
PSNR 38.66 38.70 39.06 39.11 39.19 39.28 
SSIM 0.901 0.904 0.907 0.907 0.909 0.912 

Test Data DND 
Methods CBDNet RIDNet VDN ADNet DRFENet Ours 
PSNR 38.05 39.25 39.33 39.37 39.45 39.55 
SSIM 0.937 0.944 0.952 0.951 0.953 0.951 

 

 
 

Fig.11 Result of different denoising models on the real noisy image 
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3.4.5. Discussion and analysis 
The MADRNet exhibits an outstanding denoising 

effect on gray images denoising, as depicted in Fig.8 and 
Fig.9. MADRNet model adopts the interval transmission 
strategy based on skip connection. The MADRNet model 
can not only restore the image more comprehensively but 
also render the image details smoother, and image 
possesses an extremely favorable three-dimensional 
perception.  

For color image denoising, the MADRNet model can 
handle the relationship among image colors and maintain 
color consistency and naturalness, as shown in Fig.10. 
MADRNet utilizes the strategy of expanded convolution 
and skip connection to capture a considerable amount of 
shallow information for learning the fine detail features of 
color noise images and enhancing the expression of noise. 
Meanwhile, NEB can extract a significant amount of 
noise information and establish the communication 
between the upper and lower layers, which is highly 
beneficial for denoising color images. 

The real noise image stems from the real 
environment, and the noise type is complex and non- 
uniform. The MADRNet demonstrates high adaptability,  
effectively preserving details and texture, as shown in 
Fig.11. For real image denoising, DRAB plays a crucial 

role in MADRNet. This module can adaptively learn the 
noise distribution and can effectively enhance the noise 
separation ability of the model. 

3.5 Data analysis 
To further validate the robustness of the model 

presented in this paper, we conducted 60 experiments with 
diverse noise distributions to test the model. Each group of 
experiments shared the same noise graph. We employed 
the mean and standard deviation to verify the stability and 
denoising performance of the algorithm. Table 9 presents 
the mean and standard deviation of distinct models when 
the noise intensity is 15, 25, and 35. Evidently, the standard 
deviation of MADRNet is generally low, indicating that the 
model proposed in this paper exhibits enhanced 
performance and superior robustness. 

Fig.12 showcases the comparison of error bars of 
PSNR for various models on dataset Set12 at a noise level 
of 25. From the figure, it can be seen that by adding error 
bars, we can evaluate the performance of the proposed 
model more precisely. Although the increments of PSNR 
might appear insignificant, we can confirm the statistical 
significance of these increments through error bar 
validation, thereby ensuring the validity of the proposed 
approach in terms of PSNR. 

 
Table 9 The mean PSNR and standard deviation of distinct models when the noise intensity is 15, 25, and 35. 

Methods  DnCNN IRCNN ECNDNet ADNet DRFENet MADRNet 

σ =15 
Mean 32.87 32.71 32.89 32.94 32.98 33.14 

Standard deviation 0.000721 0.000737 0.000739 0.000728 0.000737 0.000724 

σ =25 
Mean 30.44 30.26 30.46 30.48 30.51 30.64 

Standard deviation 0.000985 0.000961 0.000976 0.000944 0.000959 0.000935 

σ =35 
Mean 27.20 27.01 27.21 27.29 27.31 27.44 

Standard deviation 0.00121 0.00145 0.00131 0.00171 0.00117 0.00198 

 

 
 

Fig.12 The comparison of error bars of PSNR for various  
models on dataset Set12 at a noise level of 25 

 

4 Conclusions 
In this paper, MADRNet is proposed for image 

denoising. To enhance the global awareness of model 
and extract more fine-grained information, we build the 
MADRNet model by adopting the interval transmission 
strategy based on skip connection and the strategy 

integrating the dilated convolution and the skip 
connection.The new network includes a dense interval 
transmission block, sparse residual block, dilated 
residual attention reconstruction block, and noise 
extraction block. We improve the classical dense 
connection block, introducing skip connection strategy in 
the sparse residual block, adding an dilated residual 
block in the attention mechanism, and using NEB and 
skip connection to improve the transmission of context 
information. Ablation experiments and comparison 
experiments show that our new network can effectively 
recover local details, has execent model generalization 
ability and robustness, and possesses mighty global 
perception ability. Compared with other advanced deep 
learning denoising models, our new network performs 
better in peak signal-to-noise ratio, structural similarity 
index measurement and denoising time. The model 
proposed in this paper possesses comprehensive 
functionality and demonstrates exceptional performance in 
gray, color, and real images denoising. However, it is 
ineffective in preserving the structural features of the 
image. Future research will focus on exploring how to 
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preserve the structural features of images more effectively. 
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