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Abstract: For accurate prediction of nitrogen oxides (NOx) concentration during the municipal 
solid waste incineration (MSWI) process, in this paper, a prediction modeling method based on a 
sparse regularization stochastic configuration network is proposed. The method combines 
DropConnect regularization with L1 regularization. Based on the L1 regularization constraint 
stochastic configuration network output weights, DropConnect regularization is applied to the 
input weights to introduce sparsity. A probability decay strategy based on network residuals is 
designed to address situations where the DropConnect fixed drop probability affects model 
convergence. Finally, the generated sparse stochastic configuration network is used to establish 
the model, and is validated through experiments with standard datasets and actual data from an 
MSWI plant in Beijing. The experimental results prove that this modeling method exhibits 
high-precision prediction and generalization ability while effectively simplifying the model 
structure, which enables accurate prediction of NOx concentration. 
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0 Introduction 
In step with economic growth and the urbanization 

process, a large amount of municipal solid waste (MSW) 
is generated, leading to increasingly serious environmental 
pollution. Solid waste incineration has become the 
primary MSW treatment method in China because of its 
advantages of polution reduction, resource utilization and 
harmlessness[1]. However, the nitrogen oxide (NOx) 
formed during municipal solid waste incineration (MSWI) 
is considered a major atmospheric  pollutant, and if the 
emission concentration exceeds the standards, it can lead 
to serious health and environmental problems[2]. Currently, 
continuous emission monitoring systems are widely used 
to measure NOx concentration[3], however, monitoring 
systems are costly to install and maintain, and the 
measurement results lag. Therefore, accurate prediction 

of the NOx concentration is crucial for controlling 
pollution emissions from the MSWI process. 

In recent years, NOx prediction modeling has 
benefited from the rapid development of intelligent 
technologies. Common prediction models are generally 
divided into mechanistic models and data-driven models. 
Owing to the complex physical and chemical reactions 
during NOx generation and emission, constructing 
mechanistic models requires a considerable number of 
parameters to set up partial differential equations, which 
makes it difficult to ensure the accuracy and reliability of 
these models[4]. Therefore, data-driven modeling methods 
have gradually become an important means to predict 
NOx emissions, especially with the use of the neural 
network-based modeling methods, which have been 
widely applied[5-7]. Currently, neural networks mainly 
include gradient-based neural networks that use the 
backpropagation (BP) algorithm and randomized learning 
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neural networks. Among them, the randomized learning 
neural network overcomes the issues of slow convergence 
and the local minima trap tendencies of the traditional 
gradient-based neural networks, and demonstrates fast 
and effective modeling capabilities[8]. For example, the 
random vector functional link network[9] simplifies the 
learning process and improves learning efficiency by 
randomly assigning input weights and biases of the 
hidden layer nodes and using the least squares method 
to calculate output weights. However, the general 
approximation of such a randomized learning neural 
network depends on the range of random parameters and 
the number of hidden layer nodes, which affects its 
generalizability and learning ability[10,11]. In response to 
this shortcoming, a stochastic configuration network 
(SCN) with inequality constraints was presented in [12]. 
The SCN uses the incremental learning approach to 
construct the hidden layer, node-by-node, incorporates a 
supervision mechanism to select random parameters via 
inequality constraints, and then determines the output 
weights via the least squares method. Thus, the SCN 
ensures a general approximation and improves the 
precision and efficiency of the network. Owing to these 
advantages, the SCN has been intensively researched and 
widely used in various areas, including for fault 
diagnosis[13], parameter prediction[14,15], and modeling of 
industrial processees[16,17]. 

In practical applications of neural network modeling, 
overfitting easily occurs because of the limited training 
data and complex network structure. To address this issue, 
regularization strategies are commonly employed to 
improve the generalization performance of the model. 
Common regularization methods include L1 and L2 
regularization, which introduce the norm penalty term 
into the objective function to constrain the weights. L2 
regularization shrinks the parameters to zero, obtaining a 
smoother solution, but it does not reduce the complexity 
of the network. In contrast, L1 regularization tends to set 
some parameters to zero, promoting sparsity[18]. In 
addition, Dropout[19] and DropConnect[20] regularization 
are also effective methods for preventing overfitting. 
Dropout breaks the co-adaptation between nodes by 
randomly dropping some nodes during network training 
to reduce network overfitting. DropConnect, as an 
extension of Dropout, randomly drops out connection 
weights and introduces dynamic sparsity to the 
connection weights during training[21]. Overfitting also 
occurs in the SCN’s modeling process. With the increase 
in the number of hidden layer nodes, redundant nodes are 
inevitably generated because of the characteristics of the 
randomized algorithm, which complicates the network 
structure and results in poor robustness and generalization 
performances. Furthermore, in the application of practical 
industrial systems, it is often necessary to reduce the 
model complexity to alleviate the storage pressure while 
meeting the accuracy requirements. In this context, a 
parsimonious SCN with L1 regularization was proposed 
in [22], which introduced L1 regularization into the SCN 
to obtain sparse output weights and improved inequality 

constraints. Experiments proved that this method can 
effectively simplify the model structure and improve the 
generalization performance. In [23], Lu proposed a sparse 
SCN based on Bayesian learning, assuming that the 
output weights obey the Laplace distribution, adopting a 
two-level hierarchical prior distribution as the lower 
bound of the sparse prior, and obtaining an approximate 
Gaussian posterior, which simplifies parameter solving 
while ensuring sparsity, and effectively improves the 
model accuracy and generalizability ability. It has been 
proved that the sparse regularization method can simplify 
the model structure and alleviate the overfitting problem 
at the same time. 

However, owing to the random configuration of the 
input weights of the SCN, current research on sparse SCN 
has focused mainly on output weights. This results in the 
inability to fully exploit the performance of the sparse 
SCN. Therefore, this paper proposes a sparse regularization 
stochastic configuration network (SR-SCN) that combines 
DropConnect and L1 regularization. On the basis of the L1 
regularization SCN, we use an improved DropConnect 
regularization method with a probability adaptive decay 
strategy based on network residuals to introduce sparsity 
into the input weights of the SCN, breaking the co- 
adaptation between nodes. SR-SCN has been used to 
predict the NOx concentration in the MSWI process, and 
the effectiveness of the method was verified via 
simulation experiments. 

The rest of the paper is arranged as follows. Section 
1 outlines the MSWI process and NOx formation and 
elimination. Section 2 describes the SR-SCN algorithm. 
Section 3 presents an experimental evaluation of this 
method, and Section 4 drawns a conclusion. 

1 Analysis of MSWI Process 
This study takes an MSWI plant in Beijing as an 

example, and Fig.1 depicts the flow diagram of the 
MSWI process. As shown, the mixed MSW is placed in 
a solid waste storage tank, where it undergoes 
fermentation and preliminary drying before being 
transferred to the combustor. The MSW is subsequently 
conveyed through the grate, and under the combined 
action of primary air and high furnace temperature, it 
undergoes drying, combustion, and burnout processes, 
transforming into heat, residues, dust, and flue gas. 
Additionally, a significant amount of heat generated 
during the incineration process is converted into steam in 
the waste heat boiler system. Through the steam power 
generation system, the steam drives the turbine to 
generate electricity. Finally, in the flue gas cleaning 
system, flue gas containing various pollutants undergoes 
purification treatment. In summary, MSWI involves a 
multitude of complex and unpredictable reactions and 
exhibits dynamic nonlinearity, multivariable coupling, 
and other characteristics. Hence, modeling research on 
such a complex dynamic system as MSWI is extremely 
challenging. 
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Fig.1 MSWI process flowchart 
 

NOx is one of the important pollutants in the flue gas 
of the MSWI process and mainly originates from the 
chemical reaction between the nitrogen compounds of 
MSW and oxygen, as well as the oxidation of N2 in the 
primary air and secondary air at high temperatures. To 
reduce the generation of pollutants such as NOx and 
achieve safe and compliant emission of flue gas. Owing to 
the stable and sufficient combustion of MSW, urea diluent 
is injected into the furnace through the selective 
noncatalytic reduction (SNCR) system to eliminate NOx. 
Finally, the remaining NOx and other flue gases are 
purified in the flue gas cleaning system through reactors, 
material recovery, and bag filters before being discharged 
into the atmosphere. The emission of NOx is influenced 
by many factors, such as the MSW composition, furnace 
temperature, air flow rate, and the denitrification and 
purification processes. Therefore, it is difficult to 
establish an accurate model to predict NOx emissions 
from the MSWI process. 

2 SR-SCN Algorithm 
This section describes the implementation steps of 

SR-SCN and presents the pseudocode of this algorithm. 

2.1 Stochastic Configuration Network 
SCN is an incremental randomized learning model 

that utilizes a supervisory mechanism to randomly assign 
the input weights and biases of hidden layer nodes; it 
gradually increases the number of hidden nodes, and uses 
the least squares method to calculate the output weights. 
Given a set of training data, with input X={x1, x2,…, xN}, 

output Y={y1, y2, …, yN}. For the objective function 
f:Rd→Rm, assuming that the SCN has established 1L −  
hidden nodes, the output of the current network is 
represented as: 
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where βk is the output weight of the hidden layer node k; 
g(·) denotes the activation function; and ωk and bk are 
the input weights and biases of the k-th node, 
respectively. 

At this point, the network residual is eL-1=f – fL-1. If 
the current network residual does not reach the preset 
error ε, or the maximum number of nodes Lmax, the L-th 
hidden layer node is added, and the input weights and 
biases corresponding to the maximum ξ value for the new 
node are selected based on the supervisory mechanism of 
Eq. (3). 
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where hL∈RN is the output of node L; ωL and bL are 
candidate parameters of node L, and there are a total of 
Tmax sets of candidate parameters; 0<r<1; and {μL} is a 
sequence of nonnegative real numbers, μL≤(1–r) and 
lim 0L Lμ→∞ = . 

Finally, the output weights β are solved according to 
Eq. (4). 
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where HL = [h1, h2, ..., hL] is the hidden layer output matrix, 
and †( )⋅  is the Moore-Penrose generalized inverse. 

2.2 SR-SCN 
DropConnect is a regularization method generalized 

from Dropout. Unlike Dropout, which drops out hidden 
layer nodes, DropConnect drops out each connection in 
the fully connected layer with a certain probability. When 
DropConnect is applied to the input weights, it is similar 
to the random subspace method[24]. A subset of features is 
randomly selected during the training process, introducing 
randomness to improve the generalization performance of 
the model. 

When applying DropConnect to a fully connected 
layer, a binary mask M is first drawn, and each element of 
the mask M is drawn in a Bernoulli(p) distribution. The 
mask is subsequently used to drop out the connections. 
The probability of a connection being dropped is 1-p, and 
the probability of being retained is p. A different mask is 
generated in each iteration. The hidden layer output of 
applying DropConnect can be expressed as: 

 ( ,( ), )H g X M bω= ∗  (5) 
where each element of the mask Mij∼Bernoulli(p). 

In this work, DropConnect is applied to the hidden 
layer input weights of the SCN to obtain a stochastic 
configuration network with sparse input connections 
(DC-SCN). When a new hidden layer node L is 
constructed, the candidate input weights ωL are randomly 
dropped via the mask ML. At this point, the output hL of 
node L is rewritten from Eq. (2) as: 

T
1 2, , ,[ ( ), ( ), , ( )], , ,L L L L L L L L N L Lbh g x x b g x bgω ω ω= …    

  (6) 
where L L LMω ω= ∗ . Then, the optimal input weights 
and biases are selected for the added node according to the 
supervisory mechanism of Eq. (3). 

Owing to the characteristics of SCN incremental 
learning, in the early stage of model construction, the 
number of nodes is small, and this model behaves as an 
underfitting. If too many connections are dropped, the 
model cannot obtain enough features, which will slow 
down the convergence of the model. However, if 
connections are always dropped with a small probability, 
the complexity of the model cannot be effectively 

controlled with an increasing number of nodes, and the 
regularization effect will be seriously affected. Therefore, 
this paper improves the traditional DropConnect with 
fixed drop probability, and designs an adaptive decay 
strategy for probability p based on the network residuals, 
which is expressed as: 

 2
1 1( ) (1 ) exp( / || || )L Lp e c e cη− −= ∗ − +−  (7) 

where eL-1 is the network residual, c is the lower limit of 
decay, 1-c denotes the range of probability p decay, and η 
is an adjustable parameter. With increasing network nodes, 
the network residual gradually decreases, the probability 
p decreases, and the corresponding connection loss 
probability gradually increases to ensure the convergence 
speed and regularization effect of the model. 

Based on DC-SCN, L1 regularization is introduced to 
establish a sparse constraint on the output weights, and 
redundant nodes are eliminated to obtain a sparse 
regularization stochastic configuration network (SR-SCN), 
as shown in Fig.2. SR-SCN further enhances the 
generalization ability of the model while simplifying the 
model structure. By introducing the L1 norm penalty term 
into the SCN algorithm, updating the output weights can 
be simplified to solve the following matrix form: 

 2
1 1
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The above optimization problem is solved by 
constructing the augmented Lagrange function and 
adopting the alternating direction method of multipliers 
(ADMM). The specific derivation process is described in 
[22]. The output weight formula is iteratively solved as 
follows: 
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1( ) ( ( ))n n n

L L Lz H I HH Yρ ρ β μ+ −= + + −  (9) 
 

1

1 1
/ 1( )n n nS zλ ρβ μ+ += +  (10) 

 1 1 1
1 1
n n n nzμ μ β+ + += + −  (11) 

where λ1 is the regularization coefficient, ρ is the penalty 
coefficient, n is the number of iterations, µ1 is the 
introduced scale dual variable, S represents the soft 
threshold operator, and 
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Fig.2 SCN and SR-SCN models 
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SR-SCN builds upon SCN by introducing sparsity 
into its input weights via DropConnect and obtaining 
sparse output weights via L1 regularization, thereby 
constructing an overall sparse network structure. Initially, 
new nodes are created in the SCN, and during the random 
allocation of input weights, a masking technique is 
employed to achieve sparsity. The sparsity of the mask is 
determined by a probability decay function based on the 
current network residuals. Then, as in SCN, the input 
weights that satisfy the supervisory mechanism are 
selected, which ensures the convergence of the algorithm. 

Finally, when solving the output weights, the L1-paradigm 
penalty term is added, and the sparse output weights are 
solved determined iteratively via the ADMM algorithm. 
In the process of network construction, the sparse input 
weights allow the nodes to learn different feature subsets 
and introduce randomness to break the co-adaptation 
among nodes. The sparse output weights, on the other 
hand, play the role of eliminating redundant nodes. 
Therefore, SR-SCN can effectively simplify the model 
structure and improve the generalization ability. The 
pseudocode of the SR-SCN algorithm is as follows: 

 
Algorithm: Sparse regularization stochastic configuration network 

Input: Dataset{X,Y}, X={x1, x2,…, xN}, Y={y1, y2, …, yN}, the hidden layer maximum node Lmax, the tolerance error ε, the maximum 

number of configurations Tmax, the hidden layer parameter interval ϒ, the decay function parameters c and η, the regularization parameters 

λ1, ADMM penalty parameter ρ, the maximum number of iterations nmax; 

Output: SR-SCN model. 

1: Initialize: e0=[ y1,y2…,yN]T, Ω=[], W=[]; 

2: While L ≤ Lmax and ||e0|| > ε do 
3:  Randomly generate the weights ωL , bias bL in ϒ; 

4:  Calculate p based on Eq.(7) and generate mask ML ; 

5:  Calculate hL, ξL based on Eq.(6) and Eq.(3) and save Lω , bL in W, save ξL in Ω respectively; 

6:  Find *
Lω , *

Lb  that maximize ξL in Ω and set HL = [ * * *
1 2, ,..., Lh h h ]; 

7:  Calculate the output weights β* by Eq.(9)-Eq.(11); 

8:  Calculate eL = HLβ* - Y; 

9:  Renew e0 := eL; L := L + 1; 

10: End While 

11: Return: SR-SCN model 

 

3 Experiments and Results Analysis 
In this section, the effectiveness of the SR-SCN 

method is first validated through experiments using four 
standard datasets. The SR-SCN method is subsequently 
used for modeling the prediction of NOx concentration in 
the MSWI process. The simulation experiments utilize 
historical data from an MSWI plant in Beijing. All the 
experiments were conducted in the MATLAB R2020b 
environment. 

To validate the performance advantages of the 
proposed method, SR-SCN, DC-SCN, SCN, and L1 
regularization SCN (L1-SCN) were compared. The results 
are the average of 30 independent experiments. The root 
mean square error (RMSE), mean absolute error (MAE), 
and coefficient of determination (R2) were selected as 
evaluation indices. The formulas are as follows: 
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where N is the sample size; iy  is the true value; ˆiy  is 
the predicted value; and iy  is the mean true value of the 
i-th sample, respectively. 

3.1 Experiments with Standard Datasets 
Experiments were conducted to validate the 

effectiveness of the proposed method via four single- 
objective regression standard datasets from the 
Knowledge Extraction Based on Evolutionary Learning 
(KEEL) database. For each dataset, the input and output 
data are normalized to the range of [0, 1]. The activation 
function of each model is a sigmoid function; the 
maximum configuration Tmax=200; the tolerance error 
ε=10-4; the hidden layer parameter interval ϒ=[0.5:0.5:10]; 
the penalty coefficient ρ=0.05; and the maximum number 
of iterations nmax=150 for the ADMM algorithm. Details 
of the datasets and the rest of the parameter settings are 
shown in Table 1. 

The experimental results on four standard datasets 
are shown in Table 2, indicating that the DC-SCN  
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Table 1 Dataset Information and Parameter Settings 

Dataset Inputs Training samples Testing samples Lmax c η λ1 

Auto MPG6 5 314 78 50 0.3 10 0.01 

Compactiv 21 6144 2048 100 0.1 3 0.01 

Concrete 8 618 412 150 0.2 11 0.001 

Machine CPU 6 167 42 20 0.7 0.8 0.001 

 
Table 2 Comparison Results of the Algorithms on Standard Datasets 

Dataset Indicator 
Algorithm 

SCN L1-SCN DC-SCN SR-SCN 

Auto MPG6 
RMSE 0.0940 0.0685 0.0737 0.0674 
MAE 0.0620 0.0457 0.0544 0.0455 

R2 0.8004 0.8945 0.8774 0.8977 

Compactiv 
RMSE 0.0267 0.0228 0.0236 0.0194 
MAE 0.0112 0.0131 0.0106 0.0128 

R2 0.9875 0.9912 0.9901 0.9937 

Concrete 
RMSE 0.0883 0.0774 0.0708 0.0684 
MAE 0.0598 0.0575 0.0509 0.0511 

R2 0.8164 0.8599 0.8825 0.8906 

Machine CPU 
RMSE 0.1381 0.0407 0.1036 0.0372 
MAE 0.0542 0.0242 0.0441 0.0230 

R2 0.1731 0.9365 0.5557 0.9488 

 
algorithm outperforms the SCN algorithm across all four 
datasets in terms of the RMSE, MAE, and R2 metrics, and 
yields the smallest MAE in the experiments on the 
Compactiv and Concrete datasets. It can be demonstrated 
that DC-SCN has a higher generalization performance 
than does the SCN. SR-SCN achieves the optimal results 
on the remaining datasets and metrics with the minimum 
test errors. Compared with SCN, DC-SCN, and L1-SCN, 
SR-SCN has higher test accuracy and generalizability, 
which proves the effectiveness of the proposed method. 

3.2 NOx Concentration Prediction Experiments 
3.2.1 Data Preprocessing and Parameter Setting 

As the MSWI process is complex and variable, there 
are many variables affecting NOx emission concentration. 
Therefore, this paper first performs an initial screening of 
many variables based on the analysis of the MSWI 
mechanism and then screens the input features of the 
prediction model based on the minimal-redundancy- 
maximal-relevance method[25]. The mRMR method aims 
to maximize the correlation between the features and the 
target variable and minimize the redundancy among the 
selected features. In the feature selection process, the 
relevance is measured by the mutual information between 
the features and the target, and the redundancy is 
measured by the mean value of the mutual information 
between the candidate features and the subset of 
already selected features. After a feature with the 
highest relevance is selected as the initial feature subset, 
the remaining features are incrementally searched 

based on Eq. (16). 

 
1 1

1max ( ; ) ( ; )
1j m i m

j j ix X S x S
I x t I x x

m− −∈ − ∈

 −  − 
 (16) 

where X is the full feature set, Sm-1 is the selected feature 
subset, I(xj;t) denotes the mutual information between the 
feature to be selected xj and the target variable t, and I(xj;xi) 
denotes the mutual information between the feature to be 
selected xj and the selected feature xi. 

Based on experimental validation, the impact of the 
number of selected features on modeling accuracy is 
presented in Fig.3. The figure shows that the model error 
is minimized when the number of selected features 
reaches 20. Furthermore, as the number of features 
continues to increase, it is difficult to continue improving 
the accuracy of the model, and contrarily, more 
computational resources are consumed. Therefore, 20 
feature variables are selected as inputs for the predictive 
model, as shown in Table 3. 

The performance of the SR-SCN model was 
experimentally verified using 1000 historical data from a 
solid waste incineration plant in Beijing. There were 800 
training samples and 200 testing samples. All the data 
were normalized and linearly mapped to the range of [0,1]. 
The experimental parameters were set as follows: the 
maximum number of hidden layer nodes Lmax=300; in 
SR-SCN and DC-SCN, the p decay function parameters 
c=0.1, η=7.2; and in SR-SCN and L1-SCN, the 
regularization coefficient λ1=0.001, while the other 
parameters remained consistent with those used in the 
standard dataset experiments. 
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Fig.3 Model Errors with Different Numbers of Features 
 

Table 3 The Input Feature Variables 

Index Variable 

1 Flue gas temperature of primary combustion  
chamber middle 1 (℃) 

2 Flue gas temperature of primary combustion  
chamber right 1 (℃) 

3 Flue gas temperature of primary combustion  
chamber right 3 (℃) 

4 Air flow of dry grate left side 1 (Km3N/h) 
5 Air flow of combustion grate left side 1-1 (Km3N/h) 
6 Primary combustion chamber right side temperature (℃)
7 Primary air flow (Km3N/h) 
8 Main steam flow at boiler outlet (t/h) 
9 Accumulation of Lime (kg) 
10 Accumulation of activated carbon (kg) 

11 Flue gas temperature of primary combustion  
chamber left 2 (℃) 

12 Flue gas temperature of primary combustion  
chamber right 2 (℃) 

13 Gas pressure at the outlet of the induced draft fan (Pa) 
14 Air flow of dry grate right side 1 (Km3N/h) 
15 Air flow of combustion grate right side 1-1 (Km3N/h) 
16 Primary combustion chamber left side temperature (℃) 
17 Secondary air flow (Km3N/h) 
18 Urea solvent flow (L/h) 
19 Furnace negative pressure (Pa) 
20 O2 concentration of inlet flue gas (mg/m3N) 

 

3.2.2 Experimental Results and Analysis 
Fig.4 shows the prediction error results of each 

model under different hidden layer nodes. The optimal 
prediction errors that can be achieved by each model with 
the maximum number of nodes in the hidden layer not 
exceeding 500 are 10.7657 for SCN, 9.4261 for DC-SCN, 
9.5434 for L1-SCN, and 8.5885 for SR-SCN. The 
prediction accuracy of DC-SCN is improved by 12.44% 
compared with that of SCN. The prediction accuracy of 
SR-SCN is improved by 20.22% and 10.01% compared 

with that of SCN and L1-SCN, respectively. Fig.4 shows 
that with a small number of hidden layer nodes, each 
model exhibits a similar performance. However, as the 
number of nodes increases, the SCN first experiences 
overfitting, and the prediction error increases significantly. 
The DC-SCN has higher prediction accuracy and a better 
generalization ability than the SCN model, and even 
within a certain number of nodes, it still has an advantage 
over the L1-SCN and SR-SCN models. However, as the 
number of nodes continues to increase, DC-SCN also 
tends to overfit. This is because, although DC-SCN 
simplifies the network structure to a certain extent 
through sparse input weights, it cannot fundamentally 
address the complexity of the model caused by increasing 
nodes. In contrast, SR-SCN introduces L1 regularization 
based on DC-SCN, which eliminates the redundant nodes 
and further simplifies the network model. Compared with 
the L1-SCN model, the SR-SCN model has greater 
prediction accuracy and generalizability. As the number 
of hidden nodes increases, the advantages of SR-SCN 
over other models in terms of prediction accuracy and 
prevention of overfitting become more obvious. 

 

 
 

Fig.4 Prediction errors of each model under different  
hidden layer nodes 

 
Table 4 shows the comparative results of the sparsity 

of each model when the maximum node number Lmax=300. 
The sparsity of each model is measured by the proportion 
of nonzero elements in the input and output weights. The 
table shows that the input weights of SR-SCN and 
DC-SCN are sparse, and their sparsity is nearly identical. 
The output weights of SR-SCN and L1-SCN are sparse, 
and the sparsity of SR-SCN is better than that of L1-SCN. 
SR-SCN combines the sparsity of both types of weights, 
which makes it more effective in simplifying the network 
structure than the other three methods. 

 
Table 4 Comparison of the Sparsity of Different Models 

Method 
Sparsity 

Input weights Output weights 
SCN 1 1 

L1-SCN 1 0.6841 
DC-SCN 0.1893 1 
SR-SCN 0.1877 0.6404 
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Table 5 and Fig.5 show the prediction errors and 
fitting curves of different models, respectively, when the 
maximum node number Lmax=300. Table 5 shows that the 
L1-SCN, DC-SCN, and SR-SCN models are significantly 
better than the SCN models in terms of prediction 
performance. Among the RMSE, MAE, and R2 metrics, 
SR-SCN has the best results, with values of 9.2507, 
6.9851, and 0.9532, respectively, in terms of the mean 
values, and the DC-SCN results follow. In the standard 
deviation (std) comparison, SR-SCN has the best results, 
with values of 0.2910, 0.2314, and 0.0030, which are 

followed by the L1-SCN results. SR-SCN is optimal in the 
comparison of the means and standard deviations of the 
three metrics, indicating that SR-SCN has the smallest 
prediction error, the best fitting effect, and more stable 
prediction results. As also observed from the fitting curve 
graph, the SCN model is affected by the overfitting 
phenomenon and there are obvious errors in the prediction 
of some samples, whereas the SR-SCN model was fitted 
with high accuracy and no obvious errors. In summary, 
the SR-SCN model has the best ability to predict NOx 
emission concentration in the MSWI process. 

 
Table 5 Comparison of Prediction Results of Different Models 

Method 
RMSE MAE R2 

mean std mean std mean std 

SCN 11.6662 0.7232 8.4690 0.4150 0.9254 0.0093 

L1-SCN 9.8766 0.3888 7.2653 0.2773 0.9467 0.0042 

DC-SCN 9.5123 0.5362 7.1025 0.3282 0.9504 0.0056 

SR-SCN 9.2507 0.2910 6.9851 0.2314 0.9532 0.0030 

 

 
 

Fig.5 Comparison of the fitting results of different prediction models 

 
4 Conclusion 

To achieve accurate prediction of NOx emission 
concentration in the MSWI process, this paper proposes a 

modeling method based on a sparse regularization 
stochastic configuration network (SR-SCN) in response 
to the SCN algorithm modeling’s overfitting and poor 
generalizability problems. The method applies 
DropConnect regularization to the input weights to break 
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the co-adaptation between nodes, and combines L1 
regularization to constrain the output weights and 
eliminate the redundant nodes, which implements the 
sparsification of the SCN prediction model. Experiments 
with standard datasets and actual data from MSWI plant 
proved that SR-SCN can effectively resolve the 
overfitting problems caused by complex network structures. 
Compared with the SCN, DC-SCN, and L1-SCN methods, 
the SR-SCN method has greater accuracy and 
generalizability for NOx concentration prediction and 
effectively simplifies the model structure, which is 
valuable for the research and application of pollutant 
prediction in the MSWI process. Since SR-SCN uses the 
ADMM algorithm to iteratively determine the output 
weights, which increases the computational complexity of 
the model, designing a lightweight training algorithm 
based on the proposed method to optimize the 
computational efficiency and resource consumption will 
be the focus of future research. 
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