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Abstract: With the rapid development of social economy, transportation has become faster and more efficient. 
As an important part of goods transportation, the safe maintenance of tunnel highways has become particularly 

important. The maintenance of tunnel roads has become more difficult due to problems such as sealing, nar-

rowness and lack of light. Currently, target detection methods are advantageous in detecting tunnel vehicles in a 

timely manner through monitoring. Therefore, in order to prevent vehicle misdetection and missed detection in 

this complex environment, we propose aYOLOv5-Vehicle model based on the YOLOv5 network. This model is 

improved in three ways. Firstly, The backbone network of YOLOv5 is replaced by the lightweight Mobile-

NetV3 network to extract features, which reduces the number of model parameters; Next, all convolutions in 

the neck module are improved to the depth-wise separable convolutions to further reduce the number of model 

parameters and computation, and improve the detection speed of the model; Finally, to ensure the accuracy of 

the model, the CBAM attention mechanism is introduced to improve the detection accuracy and precision of the 

model. Experiments results demonstrate that the YOLOv5-Vehicle model can improve the accuracy. 
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1  Introduction 

With the rapid development of the global 
economy, the number of transportation vehicles is also 
increasing, which brings a lot of convenience to 
people and speeds up the transportation of goods. 
However, this has also aggravated the problems of 
road traffic congestion, frequent traffic accidents, 
serious energy wastage and deterioration of 
environmental quality. Therefore, these issues have 
put forward higher requirements for tunnel 
highwayssafety, andalso driven the construction and 
wide adoption of various high-level intelligent 
highways. Especially in mountainous areas, tunnel 
highways are an important part of road traffic, and 
their safety is directly related topeople's lives[1]. 

The driving environment of a tunnel highways is 

more complex than that of a regular highway because 
of the narrow, enclosed space and numerous facilities, 
which makes its operation and management 
particularly important. In tunnelhighways, the driving 
speed is high, the number of vehicles is large, the 
lighting is poor, the noise is loud, and the air quality is 
poor, which results in a high accident rate and difficult 
rescue efforts, especially when a traffic accident 
occurs on a vehicle carrying flammable and explosive 
materials, the traffic problem will be more serious.  

Therefore, it is essential to establish an effective 
and comprehensive real-time monitoring system for 
tunnel safety to prevent and reduce the occurrence of 
accidents in the tunneland to minimize their 
destructive impact[2]. 

Currently, object detection technologiesare the 
key to vehicle detection based on traffic surveillance 
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videos. traditional methods use the sliding window 
approach to extract candidate frames and then extract 
information of each frame, which is input into a 
classifier for recognition[3]. These algorithms include 
Haar+Adaboost[4], Hog+SVM[5], and DPM[6]. 
However, traditional target detection algorithms 
generate a lot of redundant candidate frames during 
the sliding window extraction process, resulting in 
slower detection speeds and lower efficiency[7]. 

With the development of deep learning and GPU, 
object detection models based on deep learning are 
becoming more and more diverse. Nowadays, target 
detection methods canbe classified into two main 
types: Two-Stage methods and One-Stage methods[8]. 
In the Two-Stage methods, the target candidate 
regions are generated, and then the generated 
candidate regionsare classified and calibrated for 
position to obtain the final detection result. Such 
algorithms include fast R-CNN, R-CNN, and 
faster-CNN[9~11]. In the One-Stage methods, object 
classification and position prediction are performed 
directly in the network without generating a 
preselection box. This converts the entire target 
detection process into a regression problem, so that 
the class and location information of the target object 
is obtained by processing the input image once. The 
network structure is simple and reduces a lot of 
redundant computation. The more common algorithms 
are SSD[12-13], YOLO[14], YOLOv2[15], YOLOv3[16], 
YOLOv4[17], YOLOv5. 

Therefore, the single-stage approach has faster 
detection speed and higher accuracy than the 
two-stage approach. Shu Liu, Lu Qi, et al.[18] 
proposed the R-CNN detection model, which applied 
deep learning to target detection for the first time. Cai 
et al. [19] introduced cascaded classifiers and proposed 
the Cascade R-CNN, which optimized the noise 
interference problem in the detection frame and 
effectively improveddetection accuracy by adjusting 
the overlap rate (Intersection over Union, lOU) 
threshold. Chen[20] choose to classify objects of 
different sizes. To detect medium objects, they 
deepened the network's depth to extract more 
semantic features.To detect small objects, they 
introduceddeconvolution and region mapping to 

obtain a higherresolution feature map, which greatly 
improved the detection accuracy of small and medium 
targets. Reference [21] used the k-means algorithm to 
cluster the dataset and learned from the dense network 
idea to improve the YOLOv3 network for detecting 
aircraft targets in remote sensing images, which 
greatly improved the detection accuracy. Yuchun Chu, 
Hang Gong, et al.[22] proposed a knowledge 
distillation algorithm based on yolov4 for target 
detection, which can improve the accuracy of the 
model and reduce the parameters, but there is still 
room for improvement in detection speed and 
efficiency. In summary, deeplearning methods have 
high application value in vehicle target detection. 

A large number of video surveillance devices 
have been deployed and installed in actual expressway 
tunnels, which contain a wealth of vehicle information. 
Based on this, more and more researchers use video 
data as the entry point to study various vehicle 
behavior states, gradually improve management 
efficiency and alleviate the contradiction between 
massive surveillance cameras and limited surveillance 
capabilities. Reference [23] introduced a 
convolutional neural network model to identify 
vehicles based on traditional image processing 
methods, which overcomes the false detection caused 
by light interference to some extent but cannot 
fundamentally improve the vehicle detection problem. 
Shixu Shi et al.[24] used a hybrid differenttechnique to 
extractvehicle targets in the video and used a particle 
filtering algorithm to track the moving vehicle to 
realize the parking detection behavior of the vehicle. 
Du et al.[25] improved YOLOv3 for highway vehicle 
target detection, but this algorithm is greatly 
influenced by light and fast target movements and is 
not suitable for tunnel highways. 

Considering the constraints of tunnel highways, 
such as low light conditions, the possibility of missed 
and false detections, this paper proposes a network 
model, YOLOv5-Vehicle, which is based on an 
improved version of YOLOv5. This model reduces the 
number of parameters in the original model, while 
improving its accuracy and detection speed. 

The main strategies used in this paper are as 
follows: 



34 ZHENG Lie et al: A Light-weight Deep Neural Network for Vehicle Detection in Complex Tunnel Environments 
 
 
 
 
 

 

(1) Modifications to the backbone of YOLOv5. 
The backbone network of YOLOv5 is replaced with a 
lightweight MobileNetV3 network to extract features 
and reduce the number of model parameters.  

(2) Replacement the convolutional network. All 
traditional convolutions in the neck module are 
replaced with depth-wise separable convolutions, 
which further reduce the number of model parameters 
and computation, thus improve the detection speed of 
the model.  

(3) Modifications to the attention mechanism of 
YOLOv5. The CBAM attention mechanism is 
introduced to ensure the accuracy of the model and to 
improve its detection precision.  

Experiments results demonstrate that the YO-

LOv5-Vehicle model can effectively improve the ac-
curacy and the detection speed of vehicle detection in 
the tunnel environments. 

2  Introduction of Yolov5 Detection Network 

On June 25, 2020, YOLOv5 proposed by 
Ultralytics LLC, which is an improved version of 
YOLOv4. This algorithm contains the advantages of 
many deep learning algorithm frameworks. It has high 
accuracy, fast detection, and better performance on 
open source data[27]. 

Therefore, this paper uses YOLOv5 as the 
detection model. Its network model is composed of 
four parts: Input, Backbone, Neck and Prediction[28]. 
The network structure of YOLOv5 is shown in Fig.1. 

 

 
 

Fig.1  Structure Diagram of YOLOv5. (a) Structure Diagram of YOLOv5.  
(b) Some Combinations in Structural Diagrams 
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First, the inputsection consists of an image size 
of 640×640. There is Mosaic data augmentation, 
which involves splicing images using methods such as 
random cropping, scaling and placement, and it can 
enrich our dataset. In addition, adaptive anchor box 
calculation and adaptive image scaling are included. 
The former involves constructing anchor boxes based 
on the offset of the real border position relative to the 
preset boundary during training. This process involves 
outlining targetsat potential position and adjusting 
them to predefined boundaries. The latter involves 
adaptively adding minimal black borders to the 
original image, thus effectively increasing the 
inference speed. Secondly,the backbone network 
includes the Focus,CSP and spatial pyramid pooling 
SPPF [30]. In the Focus section takes the original 
640×640×3 image as input and passes it through the 
Focus structure. A slice operation produces a 
320×320×12 feature map, which is then convolved 
with 32 convolution kernels to create a 320×320×12 
feature map. Meanwhile, CSP1_X enhances the 
gradient values by adding a residual structure during 
backpropagation, effectively preventing the gradient 
from disappearing due to the network being too deep. 
Third, the neck network combines the feature pyramid 
FPN [29] and PAN [30]. FPN transfers and fuses 
high-level feature information top-down by upsampling 
to obtain a feature map for prediction. In contrast, PAN 
transfers strongly localized features from the bottom up. 
The combination of these methods aggregates the 
parameters of different detection layers from various 

backbone layers to enhance the feature fusion ability 
of the network. The CSP2_X structure is employed in 
the neck module, mainly composed of a series of 
convolutional layers, which strengthen the network's 
ability to integrate features and retain more feature 
information. Finally, the Prediction part 
includesGIOU_Loss and a weighted NMS (Non- 
Maximum Suppression) to screen multiple target 
anchor boxes to improve detection accuracy. 

3  Improvement of Yolov5  

3.1  Improvement of Network Structure  

MobileNetV3 was published in 2019[31]. It 
combines the depth-wise separable convolution of 
MobileNetV1, the inverted residual structure of 
MobileNetV2, linear bottleneck and SE modules. It is 
characterized by fewer parameters and fast speed, 
which can greatly reduce the demand for 
computational power. TheSE attention mechanism 
adopted by MobileNetV3 obtains the importance of 
each channel by averaging pooling and fully 
connection layers, and then suppressing or enhancing 
the channels for different tasks. Inaddition, it also uses 
the Hard-Sigmoid activation function at the second 
connection layer, which can improve the operation 
speed to some extent. Our article performs feature 
extraction by replacing thebackbone network of 
YOLOv5 with the MobileNetV3 network. Its network 
structure is shown in fig.2. 

 

 
 

Fig.2  Structure Diagram of MobileNetV3 
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3.2  Introduce of Depth Wise-separable Con-
volution  

The traditional convolution principle in YOLOv5 
is to multiply the input feature maps of each channel 
with the corresponding convolution kernel and 
accumulate them, and finally output the feature maps. 
The traditional convolution structure is shown in fig.3. 

 

 
 

Fig.3  The Traditional Convolution 
Decomposition Process 

 

Ix and Oy in the figure represent the size of the 
input image and the output image respectively, Dk 
represents the size of the convolution kernel, C and N 
are the number of input and output channels. The 
definition of traditional convolution is shown in 
equation (1): 

 Q2=D2
k×C×N×Qy  (1) 

In 2017, Sandler et al. proposed the concept of 
depth-wise separable convolution as a lightweight 
method for embedded devices[32]. The well-known 
Xception and MobileNet models use depth-separable 
convolutions to replace traditional convolutions to 
reduce model parameters and improve computing 
speed. Therefore, it greatly reduces parameters and 
computation of the model and effectively speeds up its 
detection. Depth-wise separable convolution is a 
plug-and-play module that is also widely used in 
convolutional neural network models. It is easyto 
deploy and can meet the needs of lightweight 
parameters and computation. 

It consists of two small operations: depth-wise 
convolution and pointwise convolution. Depth-wise 
separable convolution separates the partial 
convolution in traditional convolution into a D×D 
depth convolution and a 1×1 point-by-point 
convolution. Fig.4 shows the structure of depth- wise 
separable convolution. 

 
 

Fig.4  The Depth Wise-separable Convolution  
Decomposition Process. 

 
Ix and Oy in the fig.5 represent the size of the 

input image and the output image respectively, Dk 
represents the size of the convolution kernel, C and 
Nare the number of input and output channels. the 
definition of traditional convolution is (2), (3): 

     ொభொమ = ೖమ×∗×ା×ே×ைమೖమ××ே×మ = ଵே + ଵೖమ    (2) 

          𝑄ଵ = 𝐷୩ଶ × 𝐶 × 𝑂୷ଶ          (3) 
Comparing the computation of depth-wise 

separable convolution and traditional convolution, we 
can observe that the model parameters and 
computation can be reduced to 1/D^2 of conventional 
convolution when the model uses depth-separable 
convolution. Obviously, this can make the detection of 
the model speed is significantly improved. 

3.3  Introduce of CBAM Attention  

The CBAM (Convolutional Block Attention 
Module) attention mechanism is a lightweight 
attention module proposed in 2018. It can focus on 
channels and spaces[33]. Reference [34] added the 
CBAM module to Resnet and MobileNet for 
comparison and conducted experiments on the 
application of the two attention modules. They 
observed that the attention mechanism pays more 
attention to the target object. Given any intermediate 
feature map in the convolutional neural network, 
CBAM injects the attention map along two 
independent dimensions of the channel and space of 
the feature map, and then multiplies the attention by 
the input feature map to perform adaptive feature 
refinement. Since the CBAM attention mechanism is 
an end-to-end generic module, it can also be 
integrated into CNNs and trained together with basic 
CNNs. 

In this paper, the CBAM attention mechanism is 
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used to replace the SeNet module in the network 
model to strengthen the focus on the detection target, 
which reduces the problem of detection accuracy 
degradation due to the complex environment. The 
structure of CBAM attention mechanism is shown in 
Fig.5. 

 

 
 

Fig.5  Structure Diagram of CBAM 
 
First, the input feature mapsare subjected to 

global maximum pooling and global average pooling 
through the channel attention mechanism, and then the 
two output feature maps are added using a shared 
neural network. Finally, the resulting feature mapsare 
activated by the sigmoid function to obtain the final 
channel attention feature maps. The channel attention 
mechanism is defined in equation (4) and its structure 
is shown in Fig.6. 𝑀(𝐹) = 𝛿 ቀ𝑀𝐿𝑃൫𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)൯ + 𝑀𝐿𝑃൫𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)൯ቁ 

= 𝛿(𝑊ଵ(W(𝐹௩ )) + 𝑊ଵ(W(𝐹௫ )))      (4) 

 

 
 

Fig.6  The Channel Attention Module. 
 
We perform element-wise multiplication on the 

obtained channel attention feature maps to obtain the 
input feature maps required by the spatial attention, 
perform global maximum pooling and global average 
pooling on the channel dimension, and output the 
feature maps based on the channel to make connections. 
Next, convolution is performed to reduce its dimension 
to 1 channel. Finally, the spatial attention feature map 
is generated through sigmoid. The definition of the 

spatial attention is shown in formula (5) and the 
structure of the spatial attention is shown in Fig.7. 𝑀௦(𝐹) = 𝛿൫𝑓×(ሾ𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)])൯           = 𝛿(𝑓×(𝐹௩௦ ; 𝐹௫௦ ]))     (5) 

 

 
 

Fig.7  The Spatial Attention Module. 
 

3.4  The Yolov5_Vechicle Model Structure 

This article is mainly based on the improved 
model of YOLOv5. We have made three key im-
provements: (1) We replaced the backbone network of 
YOLOv5 with the MobileNetV3 network, which can 
greatly reduce the parameters of the model. (2) We 
replaced the traditional convolution of the neck module 
with a depth-wise separable convolution, which has 
fewer parameters, this further reduces the parameters 
of the model and improves the detection speed of the 
model. (3) To avoid excessive loss of accuracy in the 
above steps, we introduce a lightweight CBAM atten-
tion mechanism module, which improves model’s 
detection precision through two dimensions: channel 
attention mechanism and spatial attention mechanism.  

Experiments have demonstrated that, with the 
above modifications, we have achieved both high pre-
cision of the model and greatly reduced the number of 
mode parameters. In addition, the detection speed of 
the model has been significantly improved, making it 
more suitable for real-time monitoring of embedded 
devices. The YOLOv5 Vehicle structure is shown in 
Fig.8. 

4  Experiments 

4.1  Experimental Environment 

In this paper, the deep learning platform is built in 
Pytorch. The detailed parameters of the experimental 
environment are shown in Table 1 and Table 2. 
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Fig.8  Structure Diagram of YOLOv5_Vehicle.(a) Structure Diagram of YOLOv5_Vehicle. 
(b) Some Combinations in Structural Diagrams 

 
 

Table 1  Experimental Environment 

Deep Learning Framework PyTorch1.8.1 

CPU Inter(R) Xeon(R)  
Platinum 8255C 

GPU 
Operating System 

RTX 2080Ti 11GB 
Ubunyu 18.04 

 

Table 2  Experimental Paramenters 

Parameter values 
Batch 16 

Width ×Height 640× 640 
Decay 0.0005 

IOU_Thresh 0.2 
Epochs 300 

Momentum 0.937 
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4.2  Evaluation Indicator 

In the field of object detection, recall, precision, 
AP and mAP(mean Average Precision) are commonly 
used to evaluate the performance of object detection 
algorithm. The confusion matrix is shown in Fig.9. 

 

 
 

Fig.9  The Confusion Matrix 
 

where TP indicates the number of samples 
predicted as positive by the algorithm, FN is the 
number of samples predicted as negative, i.e., the 
number of missed detections, and FP is the number of 
samples predicted as positive, i.e., the number of false 
detections. TN indicates the number of samples 
identified by the model as negative when their true 
category is negative. However, it is difficult to maintain 
a high recall and accuracy rate at the same time during 
model evaluation. The formula is as follows: 

          𝑅 = ்்ାிே ∗ 100%    (6) 

          𝑃 = ்்ାி ∗ 100%     (7) 

Therefore, a parameter is needed to integrate 
these two parameters. The AP and mAP are used to 
measure the algorithm performance of the detection 
network. It is applicable to both single-label and 
multi-label image classification and computation. 
Their equations can be written as follows: 

          𝐴𝑃 = ்ା்ே்ା்ேାி     (8) 

           𝑚𝐴𝑃 = ∑ ே                     (9) 

4.3  Data Pre-processing 

Due to the lack of effective public datasets in the 
field of vehicle target detection in tunnel environments, 

the datasets used in this paper are videos from certain 
tunnel highway in Hubei, China. 

4.4  Construction of Dataset 

All the images are processed by blurring, adding 
noise, flipping, brightness transformation, contrast en-
hancement, etc. 

As shown in Table 4, when the backbone 
network of the model is replaced by MobileNetV3, the 
precision rate decreases by 2% and the mAP decreases 
by 2.9%,while the parameter is 44.9% and the weight 
is 57.6% of the original model. When the depth-wise 
separable convolution(DW) is introduced, the 
precision rate decreases by 0.2% and the mAP 
decreased by 1.3%, however, the number of 
parameters is 65.3% and the weight is 62.6% of the 
original model. Thus, it can be observed that the 
introduction of MobileNetV3 and depthwise separable 
convolution can effectively reduce the size of the 
model, making it more conducive to deployment in 
mobile devices. 

The expansion of the dataset makes the 
environment more complex, thus increasing the 
difficulty of inspection. Our experimental 
datasetincludes a total of 1856 images, which were 
expanded to 3343 images. The labeling was done 
using the makesense_ai tool, where vehicles larger 
than 6 meters are defined as Vehicle_L and 
vehiclessmaller than 6 meters are defined as 
Vehicle_S, where the training set is 3008 images, and 
the validation set is 335 images. 

 
Table 3  The Number of Images 

Vehicle Train Test Total 

Vehicle_L 903 2105 3008 

Vehicle_S 101 234 335 

 

5  Experimental Results and Analysis 

5.1  Introducing Mobilenetv3 and Depth Wise 
Separable Convolution 

To simplify the model parameters, this paper 
introduces the MobileNetV3 module to replace the 
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backbone network in YOLOv5and replaces all 
traditional convolutions in the neck module with 
depth-wise separable convolutions.The experimental 
results are shown in Table 4. 

5.2  Introducing CBAM Attention 

The tunnel vehicle data were experimentally 
verified on different attention detection algorithms 
and the results are shown in Table 5. 

It can be observed that the precision rate and 
mAP of our CBAM attention mechanismare the 
highest compared to other attention mechanism, at 
96.8% and 89.1% respectively.Compared with the 
YOLOv5 model, the precision, recall rate and mAP 
value of YOLOv5_CBAM have increased by 5.6%, 

1.8%, and 1.1% respectively. 

5.3  Ablation Experiments 

Based on the original YOLOv5 algorithm, we 
added different improved methods to design ablation 
experiments to verify the improvement effect of each 
improved method Table 6. Ablation Experiment Re-
sults on the original algorithm.  

The experimental results are shown in Table 6. 
The symbol“√” indicates the introduction of 

modification methods, A, B, C, D, E and F indicate the 
algorithm models of introducing different modules 
introduced on the basis of YOLOv5 model, and 
YOLOv5_Vehicle indicates the improved algorithm 
model in this paper. From the experimental results in 

 
Table 4  Improved Experimental Results 

Model P% R% mAP% Parameters Model size/MB 

YOLOv5s 0.912 0.833 0.880 1761871 13.9 

YOLOv5_mobil 0.892 0.842 0.851 792725 8.0 

YOLOv5_DW 0.910 0.828 0.867 1151343 8.7 

 
Table 5  Results of Different Attention Mechanisms 

Model P% R% mAP% Parameters Model Size/MB

YOLOv5s 0.912 0.833 0.880 1761871 13.9 

YOLOv5_CA 0.927 0.885 0.871 1768511 14.2 

YOLOv5_CBAM 0.968 0.851 0.891 1775063 14.3 

YOLOv5_ECA 0.913 0.838 0.874 1606812 14.2 

YOLOv5_SE 0.936 0.841 0.860 1610663 14.4 

 
Table 6  Ablation Experiment Results  

Model CBAM DW MobilnetV3 P% R% mAP% Parameters Model Size/MB

YOLOv5s    0.912 0.833 0.880 1761871 13.9 

A √   0.968 0.851 0.881 1775063 14.3 

B  √  0.91 0.828 0.871 1151343 8.7 

C   √ 0.90 0.842 0.868 792725 8.0 

D √ √  0.930 0.855 0.871 1165043 9.2 

E √  √ 0.936 0.835 0.851 796317 8.6 

F  √ √ 0.901 0.841 0.838 744181 8.2 

YOLOv5_Vehicle √ √ √ 0.930 0.854 0.894 747773 8.4 
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Table 6, compared with the originalYOLOv5, the 
number of parameters andweights of the model can be 
effectively reduced by introducing MobileNetV3 and 
depth-wise separable convolution. When MobileNetV3 
is introduced, the parameter amount and weight size 
are 44.9% and 57.6% of the original model, 
respectively. When depth-wise separable convolution is 
introduced, the parameter amount and weight size are 
65.3% and 62.6% of the original model, respectively. 
When both  are introduced simultaneously, the model 
parameters and weights are 42.2% and 58.9% of the 
original model, respectively. The precision rate and 
mAP are 90.1% and 83.8%, respectively, which are 
1.1% and 4.2% lower than the original model, but the 
size of the model is substantially reduced. Then, a 
lightweight CBAM attention mechanism, named YO-
LOv5_Vehicle, is introduced based on the F model. Its 
parameters and weights are 42.4% and 60.4% of the 
original model, respectively. The precision and mAP are 
93.0% and 89.4% respectively. Compared with the 
original model, the precision rate and mAP increased by 
1.8% and 1.4%. It can be seen that the model proposed 
in this paper not only greatly reduces the computational 
volume and parameters and shrinks the size of the model, 
but also ensures a high accuracy rate and mAP. 

The positioning loss box_loss, classification loss 
cls_loss, and confidence lossobj_loss curves of the 
model in this paper are shown in Fig.10: 

It can be observed that the box_loss and obj_loss 
graphs both level off around 300 epochs and almost 
converge after 300 epochs. It can be observed from the 

cls_loss graph that the curve gradually flattens out until 
the 50th epochs and converges iteratively after 50 
epochs. In order to observe detection differences be-
tween the improved model YOLOv5_Vehicle and 
YOLOv5 more intuitively, two different situations with 
smaller and denser target vehicles are selected for 
detection comparison. The results are presented in 
Fig.12, where the first row shows the original images, 
the second row shows the YOLOv5 model detection 
images, and the third row shows the detection images 
of the improved model YOLOv5_vehicle proposed in 
this paper. 

The results show that when the detection target is 
small, the improved model YOLOv5_Vehicle in this 
paper has better detection accuracy compared with 
YOLOv5; when the detection target is denser, YO-
LOv5 has missed detection, while the YO-
LOv5_Vehicle model proposed in this paper has no 
missed detection, and the detection accuracy is rela-
tively high. Therefore, the improved model in this 
paper maintains high accuracy while greatly reducing 
the parameters and computation, and has higher degree 
of recognition for small targets. 

5.4  Comparisons with Mainstream Model in 
Object Images Detection 

Comparing the accuracy and model size of the 
YOLOv5_Vehicle model proposed in this paper with 
other mainstream models further proves its superiority 
and feasibility. The experimental results are shown in 
Table 7. 

 

 
 

Fig.10  The Loss Curves. (a) Box_loss (b) Cls_loss (c) Obj_loss 
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Fig.11  The Detection Examples of YOLOv5 and YOLOv5-Vehicle. (a), (b) Original Images;  
(c), (d) YOLOv5s Detection Images; (e), (f) YOLOv5-Vehicle Detection Images. 

 
Table 7  The Detection Performances under  

Different Models 

Model P% R% mAP% Model  
Size/MB 

YOLOv4 0.881 0.836 0.842 173.1 

YOLOv3 0.871 0.826 0.833 203.5 

SSD 0.861 0.786 0.782 191.1 

Faster R-CNN 0.882 0.848 0.850 230.6 

YOLOv5_Vehicle 0.930 0.854 0.894 8.4 
 

 

According to the experimental results, compared 
with the YOLOv4 model, when the model size of 
YOLOv5_Vehicle is greatly reduced, it precision and 
mAP are increased by 4.9% and 5.2%, respectively, but 
the model size is only 4.89% of the YOLOv4 model; 
Compared with the YOLOv3 model, the precision and 
mAP of YOLOv5_Vehicle have increased by 5.9% and 

6.1%, respectively, the model size is 4.13% of the 
YOLOv4 algorithm. Compared with the SSD, the 
precision and mAP of the YOLOv5_Vehicle have in-
creased by 6.9% and 11.2%, and the model size is 4.4% 
of the SSD model. Meanwhile compared with the 
Faster R-CNN, the precision and mAP of YO-
LOv5_Vehicle have increased by 4.8% and 4.4%. 
Therefore, the improved model in this paper has better 
performance while reducing the number of parameters 
and model size. Compared with the previous model our 
model has an advantage in detecting large trucks with 
an accuracy of 0.82 and no false detections. 

6  Conclusion 

1) Replacing the backbone network of the YO-
LOv5 model with MobileNetV3 reduces the number of 
parameters in the model by 44.9% and the model size 
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by 57.6%, which greatly reduces the computational 
effort and facilitates the deployment of the model. 

2) Using depth-wise separable convolution in-
stead of the ordinary convolution of the YOLOv5 
model reduces the model parameters by 62.6% and the 
model size by 65.3%, which greatly improves the 
running speed of the model and makes it more suitable 
for quick testing. 

3) Replacing the attention mechanism in the 
YOLOv5model with the CBAM attention mechanism 
further improves the precision rate and mAP of the 
model, with precision rate of 93.0% and mAP of 92.4%, 
thereby reducing the missed detection and false detec-
tion of the model. 

4) The above three modules are integrated into the 
YOLOv5 model to obtain the final model, which not 
only has fewer parameters and faster detection speed, 
but also ensures higher precision rate and mAP. 

This indicates that our proposed method can ef-
fectively detect vehicles on tunnel highways, which 
has a certain promotion effect on promoting further 
research in the field of vehicle detection and tracking. 
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