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Abstract: Accurate predictions of the Remaining useful life (RUL) of mechanical equipment are 
vital for lowering maintenance costs and maintaining equipment reliability and safety. Data-
driven RUL prediction methods have made significant progress, but they often assume that the 
training and testing data have the same distribution, which is often not the case in practical 
engineering applications. To address this issue, this paper proposes a residual useful life 
prediction model that combines deep learning and transfer learning. In this model, called 
transfer convolutional attention mechanism for early-life stage time convolutional network 
(TCAM-EASTCN), an unsupervised domain adaptation strategy is introduced based on the 
characterization of subspace distances and orthogonal basis mismatch penalties in the 
convolutional attention mechanism for early-life stage time convolutional network (CAM-
EASTCN). This approach minimizes the distribution differences between different domains, 
enhancing the learning of cross-domain invariant features and effectively reducing the 
distribution gap between the source and target domains, thereby improving the accuracy of 
RUL prediction under varying conditions. Experimental results demonstrate that TCAM-
EASTCN outperforms other models in terms of RUL prediction accuracy and generalization.
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1 Introduction

With the rapid development of computational 
methods and information technology[1], the complexity of 
modern production systems is increasing. Prognostics and 
Health Management (PHM) have become effective 
methods for improving work availability[2], enhancing the 
maintainability, supportability, reliability, and safety of 
modern industrial equipment, and reducing lifecycle 
costs. Consequently, they have garnered widespread 
attention from both academia and industry professionals. 
Within the framework of Fault Detection and Prognostics 
Health Management, multiple processes are involved, 
with Remaining Useful Life (RUL) prediction technology 
being one of the key components. RUL prediction serves 
as the foundation for decision-making in management 

activities. By forecasting the remaining operational time 
of systems or components and providing early warnings 
of impending failures, RUL prediction can significantly 
mitigate the occurrence of accidents. Therefore, 
constructing accurate and reliable RUL prediction models 
holds paramount importance in the industrial domain and 
is a focal point of research for experts both domestically 
and internationally.

Over the past decade, RUL prediction technology 
has seen significant development, primarily categorized 
into three main approaches[3,4]: model-based methods, 
data-driven methods, and hybrid approaches combining 
both mechanistic models and data-driven techniques. 
Model-based approaches typically require personnel with 
extensive domain knowledge to utilize dynamic 
mathematical models for system state estimation or 
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prediction. However, due to the need for real-time 
updates of model parameters and data information, this 
method may struggle to accurately model highly complex 
and dynamic systems[5,6]. In contrast, methods for 
predicting RUL based on data alone don't require pre-
existing expert insights and can automatically uncover 
underlying causal relationships in the data. Furthermore, 
with the availability of large datasets and reduced 
demand for specialized expertise, data-driven prediction 
methods hold promise for handling extensive monitoring 
data and providing more accurate RUL predictions. These 
approaches mainly include conventional machine 
learning methods as well as techniques based on deep 
learning.

Standard machine learning models for RUL 
prediction generally consist of three phases: firstly, data 
is collected from various sensors with different 
functionalities. These sensors measure parameters such as 
vibration, temperature, and pressure, which are integrated 
into the equipment; secondly, feature extraction from the 
collected data, choosing the characteristics that most 
accurately represent the equipment's degradation pattern 
for future modeling; finally, using the extracted features 
as inputs to estimate the RUL of the equipment. At 
present, machine learning techniques, including Support 
Vector Machines (SVM) [7], Random Forests[8], and 
Artificial Neural Networks(ANN) [9], have achieved 
certain success in estimating the remaining Useful Life of 
Mechanical apparatus. As deep learning technology 
continues to advance and expand, it has gradually 
replaced the position of traditional machine learning 
methods in many fields. Deep learning constructs deep 
neural network models that can learn deep feature 
representations from data, thereby achieving precise 
handling of complex tasks. Deep learning, a specialized 
subset of machine learning, comprises a network of 
intricately interconnected nonlinear processing units. Its 
powerful nonlinear mapping and feature extraction 
capabilities have made deep learning highly regarded in 
the domains of Remaining Useful Life prediction and 
health monitoring. Recurrent Neural Networks (RNNs) 
and their derivative variants have found extensive 
applications owing to their distinctive sequential 
processing abilities. For example, Wang[10] proposed a 
framework for predicting mechanical failures utilizing a 
Recursive Convolutional Neural Network (RCNN). This 
framework utilizes recursive convolutional layers to learn 
time dependencies in degradation states. It integrates 
variable reasoning to quantify uncertainty in RCNN life 
prediction. Liu[11] introduced a feature-attention 
mechanism in their study. This mechanism dynamically 
modifies the weights of various features in the input data. 
It aims to enhance the extraction of long-term time series 
information. They input the features into bidirectional 
gated recurrent units to extract long-term time series 
information and combine convolutional neural networks 
to capture local features. Luo[12] employed Bidirectional 

Long Short-Term Memory (BiLSTM) networks, 
demonstrating their efficacy in accurately predicting the 
deterioration patterns of rolling bearings. However, 
RNNs often suffer from the problems of vanishing 
gradients and exploding gradients, greatly affecting the 
accuracy of their training. As technology continues to 
evolve, Convolutional Neural Networks (CNNs) provide 
a new perspective for predicting time series data. 
Leveraging their advantages in parallel computation, 
CNNs can efficiently handle large-scale data and capture 
more historical information while increasing the receptive 
field. For example, Wang[13] utilized Deep Separable 
Convolutional Networks (DSCN) to prognosticate the 
Remaining Useful Life of bearings, establishing a direct 
correlation in RUL predicting devoid of antecedent data. 
Ge[14] introduced a method for short-term traffic speed 
prediction grounded on Graph Attention Convolutional 
Networks, yielding noteworthy predictive efficacy. 
Furthermore, Lin[15] devised a Trend-adaptive Fully 
Convolutional Network (TaFCN) to enhance prediction 
accuracy even further.

Although deep learning-based approaches have 
shown promising advancements in the realm of 
Remaining Useful Life prediction for bearings. However, 
these methodologies often necessitate the assumption that 
the testing data (target domain) and training data (source 
domain) adhere to identical distributions. This 
assumption poses a challenge in practical engineering 
scenarios, as machinery frequently operates under diverse 
conditions, leading to notable distribution disparities in 
the data. Machines undergo an extended deterioration 
phase from regular functioning to breakdown, involving 
diverse modes of failure[16]. It is noteworthy that 
machines, even when subjected to identical operating 
conditions, can demonstrate notably distinct degradation 
trends[17]. To bolster the model's adaptability across 
varying operational settings, deep transfer learning[18] 
models have been widely applied in the fault diagnosis 
domain. Introducing transfer learning into the RUL 
regression domain is a challenging task that is still in the 
exploratory stage. To address the challenge of cross-
condition RUL prediction, Pan[19] introduced a two-stage 
approach for predicting the RUL of rolling bearings 
based on the Extreme Learning Machine. This method 
segments the operational stages of the bearings into two 
states to predict RUL, albeit focusing solely on short-
term predictive objectives for a single operational 
condition. Lv[20] introduced a sophisticated deep 
subdomain adaptive regression network designed to 
predict the RUL of bearings amidst changing operational 
conditions, successfully demonstrating cross-condition 
RUL predicting. However, it retains a lower degree of 
preservation for local spatial features, resulting in the loss 
of significant information. E Tzeng[21] introduced an 
adversarial discriminative domain adaptation model to 
mitigate distribution differences between the training and 
testing domains, thereby enhancing generalization 
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performance. However, this method also loses relevant 
information, leading to a decrease in prediction 
performance. Sun[22] presented a Deep Domain 
Adaptation (DDA) technique for RUL prediction 
challenges, employing Long Short-Term Memory 
(LSTM) for feature extraction and leveraging a reverse 
gradient approach to alleviate domain shift issues. Li[23] 
developed a progressive domain alignment strategy to 
cater to two distinct domains, utilizing a shared codebook 
to align feature distinctions and progressively diminish 
inter-domain variations. The majority of these approaches 
endeavor to ascertain domain-invariant characteristics 
shared across the source and target domains. However, 
imposing constraints on the similarity between target and 
source features without limitations may result in the 
exclusion of specific valuable information in the target 
domain For instance, the mutual information quantifies 
the relationship between the target dataset and the 
features extracted. This limitation could impede the 
domain adaptation efficacy in RUL prediction tasks.

To address the disparity in distribution between the 
original and intended domains and to guarantee feature 
scale consistency, this study introduces a model that fuses 
deep learning and transfer learning methodologies. The 
proposed model combines an efficient adaptive shrinkage 
model with a convolutional attention network[24] and 
incorporates an unsupervised domain adaptation transfer 
learning approach involving Representation Subspace 
Distance (RSD) and Basis Mismatch Penalization (BMP). 
This integration aims to bolster the predictive capabilities 
of the model specifically for the target domain. The main 
research contributions are as follows:

(1) The introduction of an unsupervised domain 
adaptation transfer learning strategy rooted in RSD and 
BMP.

(2) The resolution of bearing life prediction 
challenges across diverse operating conditions, coupled 
with the reduction of distribution disparities between the 
target and source domains enhances the accuracy of RUL 
prediction.

2 RSD and BMP

2.1 RSD

Representation subspace distance[25] is a method for 
measuring the differences in distributions between 
different datasets in a specific feature space. The 
fundamental idea is to quantify their dissimilarity by 
comparing the geometric distance of two subspaces on 
the Grassmann manifold.

In high-dimensional spaces, datasets are typically 
represented by a set of feature vectors, which form a 
subspace. The Grassmann manifold comprises all k-
dimensional subspaces, providing a natural framework 
for comparing and analyzing these subspaces. By 
computing the principal angles between two subspaces 

(essentially the "angles" between them), we can obtain a 
measure of their dissimilarity. Smaller principal angles 
indicate greater similarity between two subspaces, while 
larger angles suggest greater dissimilarity.

RSD is commonly calculated based on these 
principal angles between subspaces. Principal angles 
represent the "angles" between two subspaces, analogous 
to the angles between two vectors. Two k-dimensional 
subspaces principal angles can be found by solving an 
optimization problem that involves maximizing the inner 
products between vectors from the two subspaces.

Assuming we have two subspaces, each represented 
by an orthogonal basis matrices (UÎRn´k ) and 
(VÎRn´k ) ,where (n) is the dimensionality of the feature 
space and (k) is the dimensionality of the subspace. The 
column vectors of matrices (U) and (V ) are unit vectors 
and orthogonal to each other.

The principal angles (θi ) can be found as follows:

cos (θi ) =maxuÎUvÎV
u × v
|u||v|

(1)

where uandv respresent the column vectors of matrices 
(U) and (V ).

Once we have found all the principal angles 
(θ1θ2θk ) , RSD can be computed using some 
function of these principal angles.

RSD(UV )= ∑
i=1

k

sin2 ( )θi (2)

In other words, RSD provides a quantitative measure 
of the difference between two subspaces. A lower RSD 
value indicates more similarity between the two 
subspaces, whereas a higher RSD value suggests more 
dissimilarity.

RSD is a measurement method based on principal 
angles. It can be determined precisely by adding the sine 
values of each principal angle, or by taking the square 
root of the total sum of the squares of these sine values. 
Since the sine function monotonically increases between 
0 and π/2, RSD effectively reflects the dissimilarity 
between subspaces. When two subspaces are completely 
identical, meaning all principal angles are 0, RSD is also 
0. Conversely, as the dissimilarity between two subspaces 
increases, the value of RSD also increases.

2.2 BMP

The orthogonal basis mismatch penalty[26] is a 
regularization technique aimed at mitigating the 
discrepancy between feature spaces of different domains 
in the realm of transfer learning and domain adaptation. 
By introducing a penalty term that quantifies the 
mismatch between the bases of the source and target 
domains, this technique seeks to minimize the difference 
during the optimization process. The essence of the 
orthogonal basis mismatch penalty lies in finding a new 
basis matrix (W ) that aligns the feature representations of 
the source(U) and target domains (V )as closely as 
possible. The orthogonal basis mismatch penalty is 
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typically formulated as follows:
Peanlty(UVW )= |U -W|2F + |V -W|2F (3)

In this context, (| × |F ) denotes the Frobenius norm, 
utilized to quantify the difference between matrices. This 
penalty term encourages (W ) to simultaneously 
approximate (U) and (V ). By integrating the orthogonal 
basis mismatch penalty into the objective function of 
transfer learning or domain adaptation tasks, we aim to 
optimize task performance while reducing the 
discrepancy between feature spaces of different 
domains.

3 TCAM-EASTCN Model

3.1  Unsupervised Domain Adaptive Transfer 
Learning Strategy

This section aims to enhance the predictive accuracy 
of the model on the target domain through the integration 
of an unsupervised domain adaptive transfer learning 
approach within the Channel Attention Mechanism-
Enhanced Adaptive Shrinkage Temporal Convolutional 
Network(CAM-EASTCN). This strategy involves 
transferring labeled knowledge from the source domain 
to unlabeled data in the target domain. Denoting the 
source domain information as Ds ={xi

syi
s }ns

i=1 and the 

target domain information as Dt = {xj
t}

nt

i-1
, with xi

s and xj
t 

representing the vibration data from the respective 
domains, and yi

s denoting the remaining useful life label 
associated with the source domain. ns and nt denote the 
sample sizes in the source and target domain data, 
respectively. CAM-EASTCN is utilized to extract profound 
degradation features in the source and target domains 
denoted as Fs = [ f 1

s f b
s ] and Ft = [ f 1

t f b
t ], 

respectively, with b indicating the batch size. Each 
feature matrix is regarded as a point within the 
Grassmann space utilizing a base consisting of unit 
vectors. Through basis matching, the discrepancy 
between subspaces is minimized without altering the 
feature scale. Consequently, the transition from the 
source domain to the target domain is accomplished by 
aligning orthogonal bases while maintaining the feature 
scale.

This study applies the singular value decomposition 
technique to decompose F into Fs and Ft orthogonal 
bases and singular values, facilitating the extraction of 
standard representations.

Fs =UsΣs (Vs )TFt =UtΣt (Vt )T(4) 

The orthogonal bases in the matrix, along with the 
representation subspaces of the source domain, the 
representation subspaces of the target domain, are 
constituted by orthogonal bases Us = [u1

s u2
s ub

s ] and 
Ut = [u1

t u2
t ub

t ]. In Grassmann space, principal angles 
are commonly used to measure the difference between Us 
and Ut The definition of principal angles is :

θi =minarccos ( (ui
s )Tui

t

‖ui
s‖ ×‖ui

t‖ ) (5)

In this instance, When Θ =[θ1θb ] equals zero, it 
indicates that the subspaces formed by the two sets of 
orthogonal bases are identical, implying that the source 
domain Fs and target domain Ft share similar 
distributional characteristics.

In this study, RSD is defined as the geometric 
distance based on principal angles. The computation 
involves summing the sine values of all principal angles. 
Metrics of variation in subspace distribution are as 
follows:

disRSD (UsUt )=‖sinΘ‖1 =∑
i=1

b

sin θi (6)

(Us )TUt =Ps (diag (cosΘ))(Pt )T (7)

With cosΘ denoting the cosine value of the 
principal angle and ‖×‖1 representing the Frobenius 
norm of matrix 1.

To uphold the geometric characteristics of deep 
features within the spatial domain, it is plausible to 
introduce a penalty for any discrepancies in the bases, 
thereby guaranteeing the congruence of orthogonal bases 
within the feature subspaces. Various orthogonal bases 
exhibit distinct degenerate characteristics, and in various 
domains, similar degenerate features often correspond to 
similarly arranged orthogonal bases. Match orthogonal 
bases of equal importance from two subspaces together, 
the calculation formula is:

regBMP(UsUt ) =‖|Ps| - |Pt|‖2
F (8)

The Frobenius norm of the matrix ‖×‖F, as well as 
the matrices Ps and Pt calculated through equations (8), 
play a crucial role in this process.

3.2 Training Optimization Objective

The TCAM-EASTCN model's structural layout is 
presented in Figure 1.

The objective function consists of three main 
components: the basic RUL regression loss function for 
source domain data, the RSD loss function comparing 
deep features between the source and target domains, and 
the BMP loss function. Both the feature extractor and 
Remaining Useful Life predictor undergo training 
through the minimization of the RUL regression loss 
function using the source domain dataset. The equations 
for the calculations are detailed below:

LossRUL =
1
b∑i=1

b

( ŷi - yi )2 (9)

Here, ŷ and yi represent the predicted and actual 
remaining useful life, respectively. b signifies the batch 
size of samples from the source domain data. After 
extracting a new set of samples b from the target domain 
data, the RSD function and the BMP function are 
determined across the feature subspaces of both the 
source and target domains.

LRSD (FsFt )=‖ sinΘ‖1 (10)
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LBMP (FsFt )=‖|Ps| - |Pt|‖2
F (11)

This loss function facilitates the learning of 
transferable features, enhancing domain-adaptive 
regression. The optimization function is formulated by 
combining equations (10) through (11).

Ltotal = LRUL + αLRSD + βLBMP (12)

where α and β are penalty coefficients used to balance the 
LRSD and LBMP terms . Minimizing the feature space 
misalignment between distinct domains, following the 
determination of the ultimate optimization loss function 
in TCAM-EASTCN, facilitates the acquisition of cross-
domain invariant features by the model, thereby 
bolstering domain-adaptive regression capabilities. 
Equation (12) is adjusted as follows:
  Ltotal(θfθp ) =minLRUL (θfθp )+αLRSD (θf )+βLBMP (θf ) (13)

Here, θf ={W1b1 } represents the parameters of the 
degradation feature extractor, and θp ={W2b2 } denotes 
the parameters of the RUL prediction variable. The model 
parameters are iteratively adjusted utilizing the Adam 
optimization algorithm until the loss function reaches the 
specified convergence criteria. The algorithmic updating 
procedure is delineated as follows:

θf¬ θf - η ( ¶LossRUL

¶θf
+ α

¶LRSD

¶θf
+ β

¶LBMP

¶θf ) (14)

θp¬ θp - η
¶LossRUL

θp
(15)

In this context, η stands for the learning rate. The 
methodology for training the TCAM-EASTCN model is 
illustrated in Fig. 2. Post-training with TCAM-EASTCN, 
the model's capability to acquire cross-domain invariant 
features is bolstered. Therefore, improving the ability to 
predict RUL of bearings under various operational 
circumstances.

4  Rolling Bearing RUL Prediction 
based on TCAM-EASTCN

4.1 Method for RUL Prediction

The structure for predicting the RUL of rolling 
bearings utilizing the devised approach primarily 
comprises two key components: offline training and 
online RUL estimation, as delineated in Fig. 3. Data 
concerning the complete life cycle of bearings exposed to 
two distinct operational environments was initially 
obtained from mechanical apparatus. The data that has 
been annotated under a specific operational context is 
identified as the source domain data, whereas the 

Fig.1 Model architecture diagram of TCAM-EASTCN

Fig.2 The exhaustive training process of the TCAM-EASTCN
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unannotated data collected under a different operational 
context is recognized as the target domain data. The 
TCAM-EASTCN model is subsequently trained to utilize 
data from both the source and target domains in order to 
obtain trained feature extractors and Remaining Useful 

Life predictors. The testing data from the specified 
domain must be incorporated into the degradation 
feature extractor and the Remaining Useful Life 
predictor in order to realize accurate predictions for 
bearing RUL.

4.2 Experimental Validation

The FEMTO dataset serves as the primary reference 
dataset for the IEEE PHM 2012 Predictive Maintenance 
Challenge, accompanied by comprehensive details as 
outlined in citation[27]. To evaluate the domain adaptation 
efficacy of the novel approach under a range of varied 
operational circumstances, transfer datasets have been 
established to reflect distinct scenarios, as detailed in 
Table 1. The source domain comprises labeled bearing 
data from one operating condition, while the target 
domain encompasses unlabeled bearing data from a 
distinct operating condition.

The test data is gathered within identical operational 
parameters to those of the specified target domain. Figure 4 
demonstrates the comparison of RUL prediction 
outcomes with and without knowledge transfer, 
corresponding to tasks one through six (labeled as a to f). 
Compared to scenarios without knowledge transfer, the 
TCAM-EASTCN model demonstrates RUL curves that 

closely approximate real-world situations. This suggests a 
significant performance enhancement of the TCAM-
EASTCN model by addressing data distribution 
discrepancies across different operating conditions.

Furthermore, a visual examination of the identified 
deterioration characteristics is carried out to demonstrate 
the effectiveness of transfer learning in practice. An 
examination is conducted in this study to analyze the 
degradation characteristics that have been extracted. In 
Task One, the delineated features obtained from the 
originating and destination domains are transformed into 
two-dimensional and three-dimensional representations 
through t-SNE, illustrated in Fig. 5. The comparison 
between Figure 5(a) and 5(b) shows that The TCAM-
EASTCN model adeptly mitigates the distribution 
incongruity observed among the features derived from 
both the source and target domains, thereby validating the 
efficacy of the unsupervised domain adaptation approach 
proposed in this research.

4.3 Comparative Experiments

The efficacy of our proposed method was assessed 
through a comparative analysis involving three distinct 
approaches. Among them, two were rooted in domain 
adaptation: CAM-EASTCN-CMD (Central Moment 
Discrepancy) and CAM-EASTCN-MMD (Maximum 
Mean Discrepancy). The third approach, CAM-EASTCN, 
did not incorporate domain adaptation. Analysis of the 
data presented in Table 2 revealed that TCAM-EASTCN 
demonstrated superior performance when compared to 
the alternative methods. Furthermore, the results 
displayed in Table 3 highlighted that TCAM-EASTCN 

Fig.3 Comparison of MAE and RMSE for XJTU-SY Bearing Dataset

Table 1 The task of RUL prediction for bearing migration datasets

Task

1

2

3

4

5

6

Training Dataset(source domain
(labeled)→target domain

(unlabeled))

B1–1∼B1–7→B2-1 and B2-2

B1–1∼B1–7→B3-1 and B3-2

B2–1∼B2–7→B1-1 and B1-2

B2–1∼B2–7→B3-1 and B3-2

B3–1∼B3–2→B1-1 and B1-2

B3–1∼B3–2→B2-1 and B2-2

Test Dataset

B2-6

B3-3

B1-7

B3-3

B1-7

B2-6
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Fig.4 Comparing TCAM-EASTCN's RUL Prediction Accuracy with and without Transfer Learning on Bearing Migration Datasets

Fig.5 Analysis of visual characteristics through the utilization of t-SNE
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achieved a notable decrease of 44.4% and 47.8% in MAE 
and RMSE, respectively, as opposed to CAM-EASTCN. 
Additionally, TCAM-EASTCN outperformed CAM-
EASTCN-MMD and CAM-EASTCN-CMD by reducing 

MAE and RMSE by up to 28.6% and 29.4%, 
respectively. The results emphasize the efficacy of the 
suggested approach in facilitating the model to attain 
cross-domain invariant characteristics.

A comparative analysis was undertaken against four 
modern methodologies for predicting RUL to bolster the 
credibility of the proposed approach. These methodologies 
encompass the transfer-gated recurrent unit introduced by 
Cao[28], the multi-layer perceptron transfer learning 
method by Zhu[29], the transferable convolutional neural 
network by Cheng[30], and the domain adversarial neural 
network by Costa[31]. Table 4 and Table 5 present the 
findings from the experiments. Based on the findings 
delineated in Table 4, the data suggests that TCAM-
EASTCN displays superior performance in predicting 
Remaining Useful Life (RUL). Examination of Table 5 
reveals that TCAM-EASTCN outperforms Cao, Zhu, 
Cheng, and Costa in terms of Mean Absolute Error 
(MAE) and Root Mean Square Error (RMSE). The 

graphical representation provided in Figure 6 illustrates 
that TCAM-EASTCN consistently maintains the lowest 
MAE and RMSE values across all six tasks. This indicates 
the robust domain adaptation capabilities of TCAM-
EASTCN in analyzing vibration signals from diverse 
operational conditions. By incorporating the convolutional 
attention sub-network and the adaptive shrinkage sub-
network, TCAM-EASTCN streamlines regression tasks on 
vibration signals. The novel methodology adeptly rectifies 
the disparity in feature distribution observed across the 
source and target domains, leading to a significant 
improvement in the precision of prognosticating RUL. In 
summary, the proposed methodology demonstrates 
remarkable efficacy and superiority in predicting bearing 
RUL under varied operational contexts.

Table 2　Comparison of outcomes between the method put forth and similar approaches.

Test
Set

Task1

Task2

Task3

Task4

Task5

Task6

CAM-EASTCN

MAE

0.16±0.01

0.12±0.01

0.20±0.01

0.19±0.01

0.29±0.01

0.12±0.01

RMSE

0.20±0.01

0.17±0.01

0.25±0.01

0.24±0.01

0.34±0.01

0.15±0.01

CAM-EASTCN-CMD

MAE

0.11±0.01

0.08±0.01

0.13±0.01

0.14±0.01

0.22±0.01

0.13±0.01

RMSE

0.14±0.01

0.10±0.01

0.16±0.01

0.16±0.01

0.26±0.01

0.16±0.01

CAM-EASTCN-MMD

MAE

0.11±0.01

0.08±0.01

0.14±0.01

0.15±0.01

0.23±0.01

0.13±0.01

RMSE

0.15±0.01

0.09±0.01

0.16±0.01

0.20±0.01

0.27±0.01

0.17±0.01

TCAM-EASTCN

MAE

0.09±0.01

0.07±0.01

0.10±0.01

0.09±0.01

0.13±0.01

0.10±0.01

RMSE

0.12±0.01

0.09±0.01

0.13±0.01

0.12±0.01

0.15±0.01

0.12±0.01

Table 3 Comparison of Mean Results between the Proposed Method and Relevant Approaches

Different methods

TCAM-EASTCN

CAM-EASTCN-MMD

CAM-EASTCN-CMD

CAM-EASTCN

Average RMSE

0.12

0.17

0.16

0.23

Discrepancy

—

↑0.05

↑0.04

↑0.11

Average MAE

0.10

0.14

0.14

0.18

Discrepancy

—

↑0.04

↑0.04

↑0.08

Table 4　Comparison Results of the Proposed Method against Existing Approaches

Test Set

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Costa[31]

MAE

0.14±0.01

0.17±0.01

0.27±0.01

0.22±0.01

0.73±0.01

0.71±0.01

RMSE

0.16±0.01

0.19±0.01

0.28±0.01

0.24±0.01

0.75±0.01

0.73±0.01

Cheng[30]

MAE

0.31±0.01

0.29±0.01

0.22±0.01

0.25±0.01

0.58±0.01

0.52±0.01

RMSE

0.33±0.01

0.31±0.01

0.24±0.01

0.27±0.01

0.60±0.01

0.54±0.01

Zhu[29]

MAE

0.18±0.01

0.25±0.01

0.30±0.01

0.37±0.01

0.77±0.01

0.67±0.01

RMSE

0.20±0.01

0.27±0.01

0.32±0.01

0.40±0.01

0.79±0.01

0.69±0.01

Cao[28]

MAE

0.15±0.01

0.13±0.01

0.21±0.01

0.20±0.01

0.62±0.01

0.38±0.01

RMSE

0.17±0.01

0.15±0.01

0.23±0.01

0.22±0.01

0.64±0.01

0.40±0.01

TCAM-EASTCN

MAE

0.09±0.01

0.07±0.01

0.10±0.01

0.09±0.01

0.13±0.01

0.10±0.01

RMSE

0.12±0.01

0.09±0.01

0.13±0.01

0.12±0.01

0.15±0.01

0.12±0.01
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5 Conclusion

This paper presents a novel methodology for 
Remaining Useful Life (RUL) prediction, integrating 
deep learning with transfer learning to address practical 
challenges in real-world applications. The proposed 
approach incorporates an unsupervised domain 
adaptation mechanism, leveraging Representation 
Subspace Distance (RSD) and Bases Mismatch 
Penalization (BMP) within a convolutional attention 
mechanism to align feature distributions across domains. 
This integration results in the TCAM-EASTCN model, 
specifically designed to overcome the challenges posed 
by cross-domain feature distribution disparities. A key 
innovation of this method lies in its unsupervised domain 
adaptation strategy, which minimizes discrepancies 
between source and target domain feature distributions. 
By utilizing RSD and BMP, the model enhances its 
ability to extract domain-invariant features, ensuring 
robust generalization across diverse operational 
scenarios. Comprehensive evaluations on benchmark 
datasets, including XJTU-SY and FEMTO, demonstrate 
that TCAM-EASTCN significantly outperforms existing 
methods, achieving superior prediction accuracy, 
generalization, and robustness under varying operational 
conditions.
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Table 5 Comparison findings of the Average between the novel methodology and current strategies.

Different methods

TCAM-EASTCN

Cao[28]

Zhu[29]

Cheng[30]

Costa[31]

Average RMSE

0.12

0.30

0.45

0.38

0.39

Discrepancy

—

↑0.18

↑0.33

↑0.26

↑0.27

Average MAE

0.10

0.28

0.42

0.36

0.37

Discrepancy

—

↑0.18

↑0.32

↑0.26

↑0.27

Fig.6 Diagram of a tubular reactor
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