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Abstract: Test selection design (TSD) is an important technique for improving product 
maintainability, reliability and reducing lifecycle costs. In recent years, although some 
researchers have addressed the design problem of test selection, the correlation between test 
outcomes has not been sufficiently considered in test metrics modeling. This study proposes a 
new approach that combines copula and D-Vine copula to address the correlation issue in TSD. 
First, the copula is utilized to model FIR on the joint distribution. Furthermore, the D-Vine 
copula is applied to model the FDR and FAR. Then, a particle swarm optimization is employed 
to select the optimal testing scheme. Finally, the efficacy of the proposed method is validated 
through experimentation on a negative feedback circuit.
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1 Introduction

The rapid advancement of technology and increased 
system integration have made high-tech equipment more 
complex. This complexity leads to fault detection and 
isolation (FDI) even if predictive maintenance is more 
challenging and costly[1,2]. As is known, efficient FDI of 
complex systems requires comprehensive, accurate, and 
effective information perception as a prerequisite[3-5]. The 
test selection design (TSD) plays a crucial role in 
providing fault information and helps reduce life cycle 
costs[6,7]. Since the 1980s, TSD has been vital for 
determining system states and isolating faults by the U.S. 
military and research institutions. Although China began 
focusing on TSD technology later, significant strides have 
been made since the 1995 Outline of Equipment 
Testability, leading to increased attention from Chinese 
universities and research organizations[8,9].

TSD modeling is critical in analyzing testability and 

assessing test performance[10]. Based on TSD criteria, 
researchers have recently developed a range of modeling 
methods, which include mathematics-based approaches, 
electronic design automation (EDA) -base techniques, 
discrete-event-triggered methods, and information 
correlation-based modeling strategies[11-14]. Mathematics-
based test modeling methods typically involve 
constructing mathematical models correlating tests with 
faults[11]. While it can deliver reliable analytical results, 
particularly in false alarm analysis, it may only 
encompass a limited range of known fault modes. Each 
fault mode requires the formulation of a unique 
mathematical model, which poses significant challenges 
for system information integration. The EDA-based 
modeling approach employs EDA techniques and tools to 
automatically generate test vectors compatible with 
automated test equipment[12].

Additionally, it utilizes these resources to 
automatically diagnose the root causes of faults resulting 
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in component failure. However, this method demands a 
thorough understanding of circuit design. The discrete 
event-triggered modeling approach describes TSD system 
operations through event-driven sequences occurring 
over discrete time intervals. However, this method faces 
limitations in analyzing the logic based on values 
between fault signals and tests. Consequently, it cannot 
simulate test logic and assess test performance 
effectively[13].

In recent years, information correlation-based 
modeling methods have garnered increasing attention due 
to their ability to intuitively reflect the system's 
operational status at each test point. These methods 
include correlation modeling, multi-signal flow graph 
modeling, multi-state flow modeling, and information 
flow modeling. The core principle of these methods 
involves constructing a fault-to-test correlation matrix, 
which serves as the foundation for designing testability 
strategies. Typically, the fault correlation matrix is 
developed assuming a specific fault state, implying 
deterministic test outcomes (perfect testing) [15]. 
However, actual application systems often experience 
uncertainty in test outcomes due to diverse external and 
internal factors like electromagnetic interference, 
measurement uncertainty, and operational variability. 
Building upon this premise, Zhang et al. [16] introduced 
a TSD modeling approach grounded in statistical 
analysis, specifically addressing test result uncertainty 
using the Bernoulli distribution. Usually, TSD 
leveraging the Bernoulli distribution operates under the 
assumption that test outcomes constitute independent 
random variables. However, actual systems often 
feature interconnected and interdependent components, 
leading to correlations among test variables. This 
renders the assumption of independence among test 
variables inadequate. Leveraging the statistical model 
of testability, many researchers delve into various 
related challenges, including the testability growth 
problem, testability problem, and testability evaluation 
problem[17-19].

Recognizing the importance of accounting for test 
correlation, Ye et al. [15] proposed a method incorporating 
copulas to model the joint distribution of test results, 
thereby addressing the correlation among test variables. 
Expanding on this foundation, Li et al. extend their 
considerations to encompass the impact of random errors 
and multiple failure modes by a testability model 
grounded in joint distribution. Tang et al. [22] introduced a 
novel perspective by modeling testability using the kernel 
density estimation (KDE) approach. They then delved 
deeper into this method, exploring a data-driven TSD 
modeling approach derived from KDE[23]. On a similar 
note, Li et al. [24] put forth a fresh data-driven TSD-based 
modeling approach, incorporating the Kullback-Leibler 
(KL) divergence.

In test correlation studies, the methodologies 
described above often rely on copula-based functions. 

However, employing a multivariate copula function 
solely to compute the correlation of random variables 
overlooks nuances such as variations in tail correlation 
among different pairs of test variables. To solve the 
multidimensional correlation problems in engineering 
design, researchers[25,26] proposed the idea of constructing 
pair-copula construction (PCC) and successively 
developed the regular vine copula model theory. Jiang et 
al. [27] proposed a regular vine copula-based structural 
reliability analysis method to quantify the correlations for 
complex multidimensional engineering problems. Li et 
al. [28] proposed a one-step Bayesian copula model 
selection-assisted D-vine sampling method (OBCS-D) to 
achieve the coupling of uncertain variables in composites. 
Consequently, D-Vine copula theory can be used to tackle 
the correlating test issue. It is important to note that the D-
Vine copula theory is founded on continuous data[29]. 
When constructing fault isolation rate (FIR) models 
based on the joint distribution, specific transformations 
are often required for the test outcomes and thresholds[15]. 
These transformations can potentially disrupt the 
continuity of the data, which may consequently impact 
the performance of FIR models under D-Vine copula 
theory.

Motivated by the above discussions, this paper 
introduces an innovative approach that combines copula 
and D-Vine copula to address the correlation issue in 
testability design. The correlation issue of TSD is 
leveraging copula to calculate the FIR and D-Vine copula 
and determine the fault detection rate (FDR) and the false 
alarm rate (FAR). It is noteworthy that the FAR can be 
similarly described as the fault detection rate of the 
system in a fault-free state[15]. Then, the corresponding 
constraints are modeled based on FDR and FIR. The final 
optimal test point is then determined using the particle 
swarm optimization (PSO). The contributions of this 
paper are described below:

1. A copula function is employed in FIR to 
effectively characterize the correlation between test 
outcomes.

2. A new D-Vine copula-based TSD modeling 
methodology is proposed for modeling the FDR 
constraint metric to better address the dependence 
between test outcomes.

3. A PSO algorithm obtains the optimal test set 
based on the proposed TSD modeling method.

The main organization of this paper is as follows. In 
Section II, a framework related to TSD modeling is 
presented. In Section Ⅲ , the FIR and FDR model are 
constructed based on the copula theory and vine copula 
theory, respectively. The corresponding test selection 
model is built and the PSO algorithm is used to select the 
optimal test set in Section IV. In Section Ⅴ , a negative 
feedback circuit (NFC) is utilized to verify the validity of 
the proposed method. Finally, Section VI gives the 
corresponding conclusions.
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2 TSD framework

Some definitions are given as bellow:● The set of possible faults is given byF =
 { f0f1fm }, for a system, where m denotes the number 
of faults; and f0 represents the fault-free state.

● The prior probability of the corresponding fault 

in the fault set F is P = {p0p1pm }, where ∑
i=0

m

pi = 1.

● The set of all tests is depicted by T ={t1 t2tn } 
and the corresponding test cost is presented by CT =
{ct1 ct2ctn }.

● The set of test thresholds is thr =
(thr1thr2thrn )..

● The test selection vector is S = (s1s2sn ). If 
test tj is selected then sj = 1, otherwise sj = 0.

Typically, two metrics, FDR (encompassing the 
system fault detection rate in a fault-free state, i.e., FAR) 
and FIR serve as indicators of the performance of a 
system test. The FDR and FIR are calculated based on the 
test outcomes, thus the outcomes of the tests directly 
influence both metrics. With the escalating complexity of 
systems, the components within the system are not 
isolated entities but intricately interconnected. This 
interdependence is also reflected in the system's test 
outcomes, often showcasing correlations. The issue of 
correlation between test outcomes under fault conditions 
is illustrated by an example of a linear voltage divider in 
Fig.1[24].

The circuit shown in Fig. 1 consists of a 2p potential 
fault and n test points {t1 t2tn }. When analyzing the 
t1 and t2, the voltage values for t1 and t2 can be calculated 
as Eq.(1) and Eq.(2).

V (t1 )=
R1 (R3 +R4 )

R1 R2 + ( )R1 +R2 ( )R3 +R4
Vdc (1)

V (t2 )=
R1 R3

R1 R2 + ( )R1 +R2 ( )R3 +R4
Vdc (2)

where Vdc represents the voltage source. If a fault is 
considered according to Eq. (1) and Eq. (2), it can be 
observed that when the value of R1 changes until the test 
outcomes for V (t1 ) and V (t2 ) exceed their respective 
thresholds, both test points t1 and t2 are capable of 
detecting R1 faults. This redundancy in testing leads to 
increasing test costs and re-source wastage. Thus, 
selecting appropriate test points to mitigate correlation 
issues for testing becomes essential.

However, relying solely on the multivariate copula 

function to assess the correlation of random variables has 
clear limitations[15], particularly regarding neglecting 
variations in tail correlation across different variable 
combinations. Here, the D-Vine copula theory is a viable 
solution based on continuous data. Usually, specific 
transformations become necessary for test outcomes and 
thresholds, when establishing FIR models based on joint 
distribution[15]. These transformations could potentially 
disrupt data continuity, affecting the efficacy of FIR 
models based on D-Vine copula theory. This paper 
proposes a novel test selection design approach that 
integrates copula and D-Vine copula methodologies. The 
aim is to compute FIR using copula while mitigating 
correlation issues in the FDR mode through D-Vine 
copula. As illustrated in Figure 2, the first step involves 
collecting test outcomes for different fault states at each 
test point, which will be used as the total sample set. 
Next, the FIR based on the joint distribution and the FDR 
based on the D-Vine copula are computed, corresponding 
to the left and right parts of the figure, respectively. 
Finally, after constructing the FIR and FDR models, the 
fitness function (test cost) is determined and the optimal 
test set is selected using the PSO algorithm.

3 TSD model

In this section, copulas are used to model FIR on the 
joint distribution, and D-Vine copula is utilized to model 
FDR.

3.1 Copula-based FIR Model

3.1.1 Copula theory for joint distributions

Copula theory, excelling in characterizing 
correlations among multidimensional random variables. It 
has been integrated into test selection design to address 
the challenge of correlation between test results 
effectively. For two-dimensional random variables X and 
Y , let the marginal distribution functions be u =F ( x) and 
v =G ( y) and the corresponding marginal probability 

density functions (PDF) be f ( x) and g ( y). The joint 

distribution function of X and Y is F ( xy), which can be 
expressed in terms of a two-dimensional copula function 
C (uv ; θ ) defined on the space [0,1]2, as follows:

F(xy)=C (F(x)G(y)) (3)

f (xy)=
¶C(F(x)G(y))

¶x¶y
= c(F(x)G(y)) f (x)g(y) (4)

The two-dimensional case can be easily generalized 
into a multidimensional case. Let the n-dimensional 
random variable be X = (X1X2Xn ). The 
corresponding marginal distribution function is presented 
by Fi (xi ). c(×) denotes the copula density function and the 
marginal density function is fi (xi ) i = 12n. Then the 
multivariate joint distribution function and the 
corresponding PDF can be expressed as:

Fig.1 Linear voltage divider
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F ( x1x2xn ) =C (F1( x1 ) F2( x2 ) Fn( xn ) ) (5)

f (x1x2xn )= c (F1 (x1 )F2 (x2 )Fn (xn )) ×
f1 (x1 )× f2 (x2 )fn (xn ) (6)

3.1.2 FIR constraint model

For a particular fault fi, successful fault isolation 
needs to be satisfied: 1) The row corresponding to fi must 
be different from all other rows in the fault-to-test 
correlation matrix; 2) The actual test results of fi should 
be consistent with the ideal test response. For condition 
1), a similarity discriminant LIi is defined as ([16]):

LIik =∏
j=1

n

[ ]( )1 - rij ( )1 - rkj + rijrkj (7)

where rij denotes the: value of fault fi under test point tj in 
the fault-test- correlation matrix, rij = 1 when the test 
result t i

j is greater than the corresponding test threshold 
thrj , otherwise rij = 0 .

LIi = ∏
k=1k¹i

m

( )1 - LIik (8)

If the test responses of fi and fk are identical, then 
LIik = 1 , LIi = 0; otherwise LIik = 0 , LIi = 1 . Therefore, 
condition 1) is satisfied when LIi = 1 .

For condition: 2), the actual test outcomes for fi 
should be consistent with the ideal test response, which 
can be expressed as·PIi:

PIi = (< t i
j⩽thrj|rij = 0Ç t i

p⩾thpp|rip = 1 > ) (9)

By adding a term ( - 1) rij
 to (10) to unify the form of 

the input variables, the FIR can be expressed as:
FIR( fi )=LIi·P ((-1)rijt j

j £ (-1)rijthrj|jÎ[1n])
=LIi ×FX (x) (10)

where the test outcomes of fi are represented by the n-
dimensional random variable X, and the test thresholds 
are described by the specific upper limit vector x in the 
joint distribution function.

Combining the above formulas while considering 
the selection vector S, the FIR based on the joint 
distribution can be finally obtained:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

FIR ( )fi; S = LI *
i ×FX (x* )

LI *
i = ∏

k=1i¹i

m ( )1 -∏
j=1

n

[ ]( )1 - rij (1 - rij )+ rijrkj

*

X = (X1X2Xn )Xj = (-1)rijt i
j

x* = (x*
1x*

2x*
n )x*

j = (-1)rijthr *
j

(11)

where

( - 1) rij
thr *

j 
ì
í
î

ïï
ïï
( )-1

rij
thrj if sj = 1

+¥ if sj = 0
(12)

where the test selection vector is S = (s1s2sn ). If test 
tj is selected then sj = 1, otherwise sj = 0.

Combining (5), (11) and (12), the copula-based FIR 
model can be formulated as:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

FIR( fi; S)=LI *
i ×C(u1u2u3uj; θc )iÎ[1m]

LI *
i = ∏

k=1k¹i

m ( )1 -∏
j=1

n

[ ]( )1 - rj ( )1 - rkj + rijrkj

sj

ui =FX( )( )-1
rijthr *

j

Xj = (-1)rijt i
j         jÎ[1n]

(13)

Fig.2 Test selection framework
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There are several common copula functions, 
including Gaussian, t- , and Archimedean copulas. The 
Gaussian copula features a simple structure that enables 
the generation of numerous data samples with predefined 
statistical distributions and dependency information. As 
Gaussian distributions are widespread in real-world 
systems, this approach enhances the relevance of the 
modeling. In this paper, we employ the Gaussian copula 
function.

3.2 D-Vine copula-based FDR model

3.2.1 D-Vine copula theory for joint distribution

Multidimensional joint distributions, can be broken 
down into multiple two-dimensional copula functions. by 
decomposition methods, such as C-Vine copula and D-
Vine copula. For C-Vine copula, one node (variable) per 
tree should be linked to each of the other nodes. This 
condition significantly restricts its applicability as the 
relevant multidimensional variables often lack primary 
variables. Conversely, the D-Vine copula offers structural 
flexibility and can mitigate the limitation caused by C-
Vine. Hence, the D-Vine copula is selected to construct 
the FDR model in this paper. Fig. 3 illustrates a four-
variable tree model based on D-Vine.

U = (U1U2U3U4 ) is the marginal distribution 
function corresponding to the joint distribution FX( x), X =
( X1X2X3X4 ). The PDF of the variable X is calculated 
by D-Vine as follows:

f ( )x1 x2x3x4 = f ( )x1 f ( )x2 f ( )x3 f ( )x4 ×

c12( )F1 (x1 )F2 (x2 ) c23( )F2 (x2 )F3 (x3 )

c34( )F3 (x3 )F4 (x4 ) ×

c1312( )F1| 2 (x1|x2 )F3| 2 (x3|x2 ) c24 |3

( )F2 |3 (x2|x3 )F4 |3 (x4|x3 ) ×

c14 | 23( )F1| 23 (x1|x2x3 )F4 | 23 (x4|x2x3 )

(14)

For an n-dimensional D-Vine model containing n - 1 
layers of tree structures Tjj = 123n - 1, each tree Tj 
has n - j - 1 nodes and n - j edges, with each edge 
representing a two-dimensional copula density function. 
The PDF of the multidimensional D-Vine model can then 

be expressed as follows:
f ( x1x2xn )

 =∏
k=1

n

fk( xk )∏
j=1

n-1∏
i=1

n-j

cii+j | i+1i+j-1  

(Fi|i+1i+j-1( xi|xi+1xi+j-1 ) 
 Fi+j|i+1i+j-1( xi+j|xi+1xi+j-1 )) (15)

Then, combining Eq. (6) and Eq. (15) further yields:
c (F1 (x1 )F2 (x2 )Fn (xn ))

=∏
j=1

n-1∏
i=1

n-j

cii+j | i+1i+j-1  

(Fi|i+1i+j-1( xi|xi+1xi+j-1 ) 
 Fi+j|i+1i+j-1( xi+j|xi+1xi+j-1 )) (16)

where Fi|i+1i+j-1( xi|xi+1xi+j-1 ) is the conditional 

probability function and according to the conclusion 
given by Joe ([30]) the conditional probability of the joint 
distribution of multivariate variables is:

F(x|v)=
¶Cxv|v-j( )F ( )x|v-j F ( )vj|v-j

¶F ( )vj|v-j

(17)

where v is an n-dimensional vector, vj is any component 
of v, and v-j denotes the vector consisting of the parts of 
the vector v that do not contain vj and C ( × ) represents 
the two-dimensional copula function under the D-Vine 
structure.

3.2.2 FDR constraint model

To account for the correlation among the outcomes 
of each test, an approach based on D-Vine copula is 
employed to construct the FDR, formulated as follows[15]:

FX (x)=P(∩ j-1
n t i

j £ thr *
j ) (18)

where t i
j denotes the test outcomes of tj when the fi 

occurs. If t i
j is larger than the corresponding test threshold 

thr *
j  , then it can be drawn a conclusion that tj can detect 

the fi, otherwise, the tj cannot detect the fi.
If a given fault fi can be detected, it is assumed that 

at least one test among all test candidates can respond to 
the fault, and when considering which test point to use as 
an alternative test, the FDR can be expressed as follows:

FDR ( fi; S ) = 1 -P ({t i
j £ thr *

j [ jÎ[1n]}) (19)

thr *
j 

ì
í
î

thrjif sj = 1

+¥ if sj = 0 
(20)

where, tj is selected then sj = 1, otherwise sj = 0.
Combining the above equations, the FDR based on 

the joint distribution is obtained:
ì

í

î

ïïïï

ï
ïï
ï

FDR ( )fi; S = 1 -FX( )x*

X = (X1X2Xn )Xj = t i
j

x* = (x*
1x*

2x*
n )x*

j = thr *
j

(21)

In this section, the joint distribution FX( x* ) in Eq. 

Fig.3 Four-variable D-Vine tree
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(21) can be solved for the FDR by utilizing the D-Vine 
structure introduced earlier in combination with Eq. (17). 
According to Bayes' theorem, the joint distribution is 
expressed as follows:

F(x1x2xn )=F1 (x1 )F2|1( x2|x1 ) F3|21( x3|x2x1 ) ×
Fn|n-11( xn|xn-1x1 ) (22)

combining (17) and (22) yields:
F ( x1x2xn )

 =F1 (x1 )
¶C21( )F2 (x2 )F1 (x1 )

¶F1 (x1 )

 
¶Cnvj|v-j( )Fn|vj (xn|xvj )Fvj|v-j (xvj|xv-j )

¶Fvj|v-j (xvj|xv-j )
 (23)

From (17), (22) and (23) it is known that the joint 
distribution can be solved by decomposing it into 
multiple two-dimensional copulas using D-Vine copula. 
Thus, the joint distribution FX( x* ) in (21) can be 

similarly decomposed. The specific steps for resolving the 
FDR based on the D-Vine copula theory are as follows:

Step 1: The marginal distribution of each variable is 
obtained by:

u1 =F1 (x*
1 )u2 =F1 (x*

2 )un =Fn (x*
n ) (24)

Step 2: According to (17), the joint conditional 
distribution of x*

2 can be calculated by:

F2|1 (x*
2|x

*
1 )=

¶C21 (F2 (x*
2 )F(x*

1 ); θv )

¶F1 (x*
1 )

(25)

Step 3: The joint conditional distributions of 
x*

3x*
4x*

n are achieved by:
F3|21 (x*

3|x
*
2x*

1 )

 =
¶C31|2 (F3|2 (x*

3|x
*
2 )F1|2 (x*

1|x
*
2 ); θv )

¶F1|2 (x*
1 (x*

2 )
 (26)

︙
Fn|1n-1 (x*

n|x
*
1x*

n-1 )=

¶Cn1|2n-1 (Fn|2n-1 (x*
n|x*

2x*
n-1 )F1|2n-1 (x*

1|x*
2x*

n-1 ); θv )

¶F1|2n-1 (x*
1|x*

2x*
n-1 )

(27)

Then, the joint distribution Fx (x* ) is expressed as 
follows:

FX( x* ) =F1 (x*
1 )F2|1( x*

2|x
*
1 ) F3|21( x*

3|x
*
2x*

1 )
           Fn|1n-1( x*

n|x
*
1x*

n-1 ) (28)

3.3 Constraint Model Construction

The constraint model for TSD is constructed by the 
weighted sum of FDR and FIR for each fault mode, as 
expressed below:

ì

í

î

ï
ïï
ï

ï
ïï
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FDR ( )F =
1

1 - p0
∑
i=1

m ( )pi FDR ( )fi

FIR ( )F =
1

1 - p0
∑
i=1

m ( )pi FIR ( )fi

(29)

where pi represents the prior probability of the 

corresponding fi and ∑
i=0

m

pi = 1.

The TSD goal is to select the optimal test set that 
minimizes the required test cost under all test points. The 
function of total testing cost, which is also known as the 
objective function, can be expressed as:

C =∑
j=1

n

ctj × sj (30)

Based on (13), (21), (28), (29), and (30), the constraint 
model for overall test selection is constructed as:

min C =∑
j=1

n

ctj × sj

s.t.FDR ( )F ³ - -- -----
FDR

FIR ( )F ³ - -----
FIR

jÎ [ ]1n

(31)

where 
- -- -----
FDR and 

- -----
FIR are the smallest values that satisfy 

FDR and FIR.

4 Test selection optimization

4.1 Copula Function Parameter Estimation

From equations (13), (25), (26) and (27), it can be 
seen that there are unknown parameters θc and θv in the 
copula function during the construction of FIR and FDR, 
and the parameters reflect the correction between the 
variables in the copula function. The MLE method is 
used to estimate θc and θv based on the sample data. The 
logarithmic likelihood function of FIR is introduced to 
evaluate the parameter θc as:
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ï

ï
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l nLc( )× =∏
q=1

k

[ ]l nc ( )uq1uq2uqj; θc

uj =FX( )( )-1
rijthr *

j

Xj = ( )-1
rijt i

j         jÎ [ ]1n

(32)

where uqj is the q th sample data of uj.
For the FDR construction process, the multi-

dimensional joint distribution is decomposed into 
multiple two-dimensional copulas. Logarithmic likelihood 
function is given to estimate the parameter θc as:

ln Lv( × ) =

∑
q=1

k
é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

ú
ln ci1| 2i-1( )Fqi | q2q ( )i-1 ( )xqi| xq2xq ( )i-1 

F1| q2q ( )i-1 ( )x1| xq2xq ( )i-1 ; θv



                                          iÎ [3n]
(33)

In particular, if i = 2, the copula function is already a 
two-dimensional form and no further decomposition is 
needed. Finally, select the maximum Lc( × ) and Lv( × ) to 
estimate θc and θv.
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4.2 PSO based optimal test selection

As previously mentioned, selecting the optimal test 
set must also ensure compliance with the constraints of 
FDR and FIR. The PSO method offers strong global 
search capabilities and fast convergence. Compared to 
other methods, PSO has significant advantages in test 
point optimization. Unlike genetic algorithms' complex 
crossover and mutation operations in, PSO features a 
simpler updating mechanism and typically converges to a 
better solution more quickly. In contrast to simulated 
annealing algorithms, PSO does not require gradual 
cooling to converge, resulting in lower computational 
overhead and reducing the risk of getting stuck in a local 
optimum. Additionally, compared to differential evolution 
algorithms, PSO is easier to implement and does not rely 
on frequent differential operations, making it less costly 
in parameter tuning. Consequently, PSO has played a key 
role in the optimal selection of measurement points in 
recent years.

In this section, the PSO algorithm will be used to 
select the best test. All particles in PSO represent 
attributes of the solution space, with each particle's 
fitness generated based on its current position to reflect 
its quality. Each particle possesses a velocity vector, and 
its position is represented by binary values of 1 or 0. 
Greater particle velocities indicate higher probabilities of 
selection. In the specific application of this paper, each 
particle represents a test point selection scheme, where a 
value of 0 or 1 for one of the dimensions indicates 
whether the corresponding test point is selected or not, 
corresponding to sj in the text. The fitness is used to 
evaluate the advantages and disadvantages of each test 
point selection scheme, the fitness in this paper refers to 
the cost of testing, which corresponds to Eq. (30), and the 
particle with the smallest fitness needs to be selected. The 
specific algorithm is outlined in Algorithm 1.

5 Case study

Negative feedback circuits (NFC) are widely used in 
analog electronics, finding application across various 
electronic systems such as marine fuel injection systems, 
intelligent manufacturing systems, and photovoltaic 
power generation systems [24]. These circuits play a key 
role in feeding a voltage or current input signal and 
feeding it back to the output part of the circuit at a 
controlled ratio. The schematic diagram of the NFC 
employed in this paper is depicted in Fig. 4.

5.1 Platform Description

In the NFC shown in Fig. 4, the input V1 is a sine 
wave signal with frequency 1khz and amplitude 7mv, and 
the supply voltage Vcc is 15V. Here, 6 test points, T =
{t1t2t3t4t5t6} are used to collect data. Five types of 
faults are applied for experimental verification as shown 
in Table 1.

Totally, 103 test data are collected for each fault type 
via Monte Carlo method from six test points. The data are 

Algorithm 1 Procedure of PSO

1. A set of particles in n-dimensional space (n-dimension is the 
number of test points tj) {1, 1, 1, ....... ,1}, {1, 1, 1, ...... ,0}, ……. 
Are generate corresponds to the current position 'xbest', and each 
particle consists of 0 and 1, reflecting whether the corresponding 
test point is selected or not.

2. The fitness fx is initialized. Here fx is the test cost per particle, i.

e., fx =C =∑
j=1

n

ctj × sj. The initial fitness fx is larger than the test 

cost when all test points are selected.

3. The FDR (F ) and FIR (F ) for each particle as well as the 
fitness fx corresponding to the particle are calculated based on Eq.
(13) , Eq. (21), Eq. (28) and Eq. (29). For particles that do not 
satisfy the conditions FDR (F ) ³ - -- -----

FDR andFIR (F ) ³ - -----
FIR, the 

corresponding fx is replaced by the initial one.

4. Compare the current fx of each particle with the initial fx. If the 
current fx is less than the initial fx, then the initial fx is replaced 
by the current one.

5. Update the velocity vector and position vector of each particle

6. Implement a catastrophe strategy: escape from the current best 
position and regenerate m random particles. Repeat steps 3-4 until 
a termination criterion is satisfied (the maximum number of 
iterations is reached).

7. Find the smallest fx among all particles, whose location 'xbest' 
is the global best location 'gbest' and the optimal combination of 
test points.

Table 1 Information fault types

Fault type

f1

f2

f3

f4

f5

Fault mode

Q1 B -C short

Q1 C -E short

Q2 C -E short

R8 = 130Ω

Q1 C -E short&R9 = 39KΩ

Fig.4 NFC schematic diagram
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assumed to follow a normal distribution. A threshold is 
established as a criterion to determine whether the test 
responds to a fault or not. The collected test data in the 
state of no-fault f0 are used to obtain the mean value μ 
and the standard deviation σ. The μ+ 3σ is set as the 
judgment threshold, which is set as:thr=(6.22,5.60,0.064,
5.58,4.93,12.12).

Based on the simulation data, the ideal value (mean 
value) for each fault state can be calculated, as shown in 
Table 2.

Then the ideal value of each fault-to-test result is 
compared with the threshold thrj. If the ideal value of 
fault fi obtained under test tj is larger than the 
corresponding threshold value, it indicates that test tj can 
detect faultfi, and the corresponding position is marked as 
1; otherwise, the corresponding position is marked as 0. A 
fault-to-test correlation matrix, as illustrated in Table 3, is 
obtained by comparisons for all fault-to-test.

5.2 TSD Model Construction and Comparisons

Two different approaches Bernoulli distribution 
(BD), and joint distribution (JD), are utilized to validate 
the effectiveness of the proposed model based on D-Vine 
copula theory (DV).

Since {0,0,0,0,0,0}, {0,0,0,0,0,1},……,{1,0,0,0,0,0} 
are not relevant, they are not included in the alternative 
test sets. While {0, 0, 0, 0, 1, 1},…… , {1, 1, 1, 1, 1, 1} are 
chosen to verify the correlation issue in TSD modeling, 
totaling 57 sets. The verification are performed for each 
of the three methods and experimental results are shown 
in Fig.5-Fig. 9.

Table 3 Fault-to-test correlation matrix

f0

f1

f2

f3

f4

f5

t1

0

1

0

0

0

0

t2

0

1

1

0

0

1

t3

0

0

1

0

1

1

t4

0

0

0

1

0

1

t5

0

0

0

1

0

1

t6

0

0

0

1

0

1

Fig.5 Comparison results of FDR under fault f1

Fig.6 Comparison results of FDR under fault f2

Fig.7 Comparison results of FDR under fault f3

Fig.8 Comparison results of FDR under fault f4

Fig.9 Comparison results of FDR under fault f5

Table 2 Ideal values of test results under different faults

f0

f1

f2

f3

f4

f5

t1

5.97

6.82

6.00

5.97

5.97

6.00

t2

5.36

6.20

7.10

5.30

5.35

7.15

t3

0.05

0.06

0.07

0.06

0.07

0.07

t4

5.30

5.37

5.36

5.60

5.30

6.10

t5

0.05

4.72

4.72

5.62

4.72

5.47

t6

11.74

11.74

11.74

12.51

11.74

12.34
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The relative errors of the FDR for faults f1 through f5 
across various constraint models are shown in Fig 5 to 9, 
with lower error values indicating better performance. 
These figures illustrate that the FDR error values based 
on the BD, JD, and DV models generally perform well in 
most test subsets. However, in a few specific subsets, 
such as {1, 0, 0, 0, 0, 1, 0}, {1, 0, 0, 0, 0, 1}, and {0, 1, 0, 
0, 0, 0, 1} under fault f4, the FDR error values for the BD 
and JD models are noticeably higher. In contrast, the DV 
model achieves excellent results in these cases. To 
facilitate a comprehensive comparison of the actual 
results, Table 4 presents the average and maximum values 
of the actual FDR.

From Table 4, it is apparent that the average FDR of 
the model constructed based on DV is slightly lower than 
the other two methods for fault f3. However, the 
maximum FDR value of the DV-based model under this 
fault is nearly equal to the other two methods. For the 
remaining four faults, the DV-based FDR model exhibits 
a notable advantage, with its average FDR value 
significantly outperforming the other two methods, while 
maintaining well performance in terms of the maximum 
FDR value. This indicates the existence of a larger subset 
of tests with higher FDRs, presenting more opportunities 
to select test points with equal or superior performance at 
lower costs. In summary, the FDR model based on D-
Vine copula theory emerges as a preferred choice.

The proposed FIR constraint model is also compared 
between BD and JD-based methods, which are given 
from Fig. 10 to Fig. 14. These figures clearly illustrate 
that the JD-based FIR model, in most of the test subsets, 
is better than the BD-based FIR model. And the 
superiority of the JD model is more prominently 

demonstrated, especially in the fault f5. However, in a few 
subsets, for example, the subsets {0, 1, 0, 1, 0, 0}, {0, 1, 
0, 0, 1, 0} and {0, 1, 0, 0, 0, 1} under faults f3 andf5, the 
JD-based FIR model is less effective than the BD-based 
FIR model. The mean and maximum values of the actual 
FIR are listed in Table 5 to further compare the 
experimental results:

From Table 5, it is apparent that the average FIR of 
the model constructed based on JD is slightly lower than 
the BD method for fault f2. However, the maximum FIR 
value of the JD-based model under this fault is nearly 

Fig.13 Comparison results of FIR under fault f4

Fig.12 Comparison results of FIR under fault f3

Fig.11 Comparison results of FIR under fault f2

Fig.10 Comparison results of FIR under fault f1

Table 4 Mean and maximum values of FDR

f1

f2

f3

f4

f5

Average FDR

BD

0.9296

0.8083

0.8963

0.5459

0.9994

JD

0.9297

0.8090

0.8963

0.5461

0.9994

DV

0.9659

0.9251

0.8876

0.7649

1

Maximum FDR

BD

1

1

1

0.9999

1

JD

1

1

1

0.9999

1

DV

1

1

1

1

1

Fig.14 Comparison results of FIR under fault f5
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equal to the BD method. For the remaining four faults, 
the JD-based FIR model exhibits a notable advantage, 
with its average FIR value significantly outperforming 
the BD method, while maintaining a good performance in 
terms of the maximum FIR value. In summary, the FIR 
model based on JD theory emerges as a preferred choice.

5.3 Optimal Test Set Selection

While many test points are needed to gather fault 
information, there is often significant redundancy in these 
tests. Therefore, optimizing the selection of test points is 
essential to reduce testing and maintenance costs. The 
PSO algorithm is utilized to achieve the optimal selection 
of the test set at a minimum test cost, thereby reducing 
the cost of the equipment over its entire life cycle. In the 
PSO algorithm, the population consists of 57 test subsets, 
with a maximum iteration count of 100. The FDR and 
FIR minimum criteria are set to (0.9, 0.9) and the test 
costs are randomly generated between 0.1 and 1. The 
proposed DV-PSO algorithm is compared with the BD-
PSO and JD-PSO algorithm to illustrate the superiority. 
The optimal test sets and test costs for these methods are 
list in Table 6. Additionally, the fitness curves for the 
respective methods are provided.

From Table 6, the DV-PSO algorithm can choose 3 
test points with a test cost of 1.9363, while the JD-PSO 
algorithm and BD-PSO algorithm choose 4 test points 
with a test cost of 2.1506. Thus, the DV-PSO algorithm 
has the least number of test points and the smallest test 

cost when both FDR and FIR satisfy the constraints. As, 
the proposed method results in a reduction in the testing 
cost, it demonstrates the economy and applicability of the 
proposed method in the test selection design.

6 Conclusions

This study proposes a new method for modeling FIR 
and FDR by copula and D-Vine copula to capture the 
correlations between test outcomes. Additionally, the 
PSO algorithm is employed for optimal test point 
selection. The effectiveness of the proposed method is 
validated compared to traditional methods such as BD 
and JD through experiments on NFC.

However, this study focuses on modeling testability 
metrics for single faults, and it is effective for a limited 
number of multiple faults. In real systems, numerous 
multi-fault scenarios often lead to excessively ambiguous 
relationships, resulting in relatively inaccurate outcomes. 
Future research will use D-Vine copula and copula 
methods to address fuzzy issues, enabling accurate 
modeling and diagnosis of faults in complex systems.

Table 5 Mean and maximum values of FIR

f1

f2

f3

f4

f5

Average FIR

BD

0.5377

0.2771

0.1617

0.5060

0.0468

JD

0.5419

0.2473

0.6721

0.5245

0.7208

Maximum FIR

BD

0.9899

0.9874

0.3068

0.9975

0.0941

JD

1

0.9938

0.9992

0.9987

0.9999

Fig.15 Fitness curve under DV-PSO

Fig.16 Fitness curve under JD-PSO

Fig.17 Fitness curve under BD-PSO

Table 6 Test selection comparison results

DV-PSO

JD-PSO

BD-PSO

test set

t1t2t6

t1t2t3t6

t1t2t3t6

test costs

1.9363

2.1506

2.1506
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