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Abstract: With the advancement of human-computer interaction, surface electromyography 
(sEMG) -based gesture recognition has garnered increasing attention. However, effectively 
utilizing the spatio-temporal dependencies in sEMG signals and integrating multiple key 
features remain significant challenges for existing techniques. To address this issue, we propose 
a model named the Two-Stream Hybrid Spatio-Temporal Fusion Network (TS-HSTFNet). 
Specifically, we design a dynamic spatio-temporal graph convolution module that employs an 
adaptive dynamic adjacency matrix to explore the spatial dynamic patterns in the sEMG 
signals fully. Additionally, a spatio-temporal attention fusion module is designed to fully 
utilize the potential correlations among multiple features for the final fusion. The results 
indicate that the proposed TS-HSTFNet model achieves 84.96% and 88.08% accuracy on the 
Ninapro DB2 and Ninapro DB5 datasets, respectively, demonstrating high precision in gesture 
recognition. Our work emphasizes the importance of extracting spatio-temporal features in 
gesture recognition and provides a novel approach for multi-source information fusion.
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1 Introduction

Human-computer interaction is essential for 
enhancing the efficiency of human-machine 
collaboration[1,2]. Hand gesture recognition (HGR), as an 
efficient and intuitive interaction, has become an essential 
branch in the field of human-computer interaction[3,4] . 
HGR research primarily relies on techniques such as 
visual images, surface electromyography (sEMG), and 
inertial signals[5-7] . However, vision-based HGR methods 
are susceptible to environmental factors like illumination 
changes, complex backgrounds, and occlusions, which 
limit their recognition accuracy. On the other hand, 
inertia-based HGR methods exhibit advantages under 
varying lighting conditions, but their limitations in 
capturing physiological characteristics and potential 
latency issues seriously affect their ability to respond to 

rapid or continuous gestures.
In contrast, sEMG-based HGR has demonstrated 

significant application potential due to its excellent signal-
to-noise ratio and rapid response time[8-10] . As anon-
invasive electrophysiological signal, sEMG contains rich 
movement and physiological information[11-13], which can 
reveal muscle activities and accurately capture intrinsic 
differences between similar gestures. Consequently, 
sEMG has become a crucial tool for understanding and 
decoding gesture movement intentions, occupying a 
unique position in human-computer interaction.

Analyzing and extracting representative sEMG 
features is challenging due to the abundant temporal and 
spatial information in sEMG signals. Existing 
characterization learning methods primarily focus on both 
temporal and spatial domains. In gesture recognition 
research, capturing temporal features typically relies on 
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recurrent neural networks (RNNs) [14,15], while extracting 
spatial features is primarily achieved through 
convolutional neural networks (CNNs) [16,17] . These 
networks play crucial roles in exploring the temporal 
dynamics and spatial distribution characteristics of sEMG 
signals. Atzori et al. [18] designed a four-layer shallow 
CNN model to extract spatial representations of sEMG 
for recognizing 52 gestures, but its average recognition 
accuracy was relatively low at 66.59%. However, sEMG 
is a signal with significant temporal dependence, which 
poses a challenge for CNN models in effectively 
capturing spatial representations. Since CNN excel at 
handling static spatial features, the time-series 
characteristics of sEMG signals necessitate the model 
that not only comprehends the features of the signal at a 
single time point, but also capture the dynamic patterns as 
the signal evolves. Therefore, Zhang et al. [19] introduced 
an extended short-term transformer feature fusion 
network called LST-EMG-Net, which achieved an 
81.47% recognition accuracy for 12 gestures using the 
Ninapro DB2 dataset. However, RNN models have 
difficulty capturing local temporal patterns in sEMG 
signals, which limits their effectiveness in improving 
gesture recognition accuracy.

Furthermore, understanding the relationship between 
hand muscle groups and gesture intent is equally crucial 
for extracting sEMG features. Graph convolutional 
networks (GCN) excel at modelling spatial information. 
Xiong et al. [22] proposed a fusion of biological feature 
information-based graph convolutional network (FBI-
GCN), which constructs adjacency matrices using 
channel node information and focuses on the potential 
spatial information between neighbouring nodes of 
individuals. However, this method of constructing the 
adjacency matrix relies on prior graph knowledge and 
struggles to capture spatial dynamic information induced 
by gesture changes adaptively. In summary, current 
methods are inadequate in decoupling the multi-level 
spatio-temporal representations and spatial dynamic 
information from sEMG signals.

How to effectively integrate multi-level spatio-
temporal and spatial dynamic information is another key 
challenge in improving the accuracy of gesture 
recognition. Feature fusion technology is an essential part 
of integrating multi-feature domain information, aiming 
to fully explore potential relevance and complementary 
advantages through information interaction among multi-
feature domains. Existing feature fusion methods 
primarily include concatenation fusion[23], additive 
fusion[24], and attention fusion[21] .For example, Xu et al.[23] 
proposed a concatenation feature fusion recursive 
convolutional neural network (CFF- RCNN), which 
aggregates temporal and spatial features through CNN 
and Long Short-Time Memory (LSTM), not only 
retaining spatial information but also obtaining temporal 
information from the context. Wu et al. [24] proposed a 
narrow kernel dual-view feature fusion convolutional 

neural network (NKDFF-CNN), which employs a narrow 
kernel to extract temporal features of each channel 
adequately and fuses different features by additive fusion 
to avoid overfitting. Duan et al. [21] proposed a novel 
alignment-enhanced interactive fusion model that 
inputs sEMG feature maps with concatenated channel 
dimensions into a self-attention mechanism for gesture 
classification to facilitate effective feature fusion. 
Although the above three feature fusion methods 
provide beneficial strategies for integrating 
information from multi-feature domains, they still 
face challenges in capturing complex feature details 
and may miss complementary information provided 
by multi-feature domains. Consequently, it is crucial 
to develop a model capable of highly integrating 
spatio-temporal features. This requires the model to 
not only focus on the interconnectivity of features, 
but also handle their heterogeneity, thereby 
significantly improving the model's representation and 
generalization capabilities.

To address these challenges, we propose a novel two-
stream hybrid spatio-temporal fusion network (TS-
HSTFNet), designed to enhance the accuracy and 
robustness of sEMG-based gesture recognition. The 
network employs MSTCM and DSTGCN to extract 
discriminative spatio-temporal features from sEMG data. 
TS-HSTFNet aims to exploit highly discriminative spatio-
temporal feature information from sEMG data using 
MSTCM and DSTGCN, respectively. Additionally, the 
STAFM learns and integrates latent correlations between 
different features to capture deeper feature details. The 
fused features are then fed into the CM to generate 
accurate results. Furthermore, the model's effectiveness is 
validated through comparisons with state-of-the-art 
methods and ablation experiments. The primary 
contributions of this paper are as follows:

1. We propose a dynamic graph structure that 
adaptively capture spatial correlations and dynamics 
relevant gesture recognition, thereby enhancing the 
spatial feature extraction capability of GCN.

2. We designed a feature fusion module combining 
spatio-temporal attention and convolutional neural 
networks. This module effectively fuses spatio-
temporal features from different perspectives and 
integrates complementary information of sEMG, 
significantly improving the model's gesture recognition 
performance.

2 Methodology

2.1 Network structure for TS-HSTFNet

The Network structure of the proposed TS- 
HSTFNet is illustrated in Fig. 1. TS-HSTFNet mainly 
consists of MSTCM, DSTGCN, STAFM, and CM. 
Specifically, MSTCM is designed to capture global and 
local spatio-temporal information at different levels in the 
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signal. Additionally, DSTGCN employs a dynamic graph 
approach to mine potential spatial topological relationships 
among sEMG multi- channels and extracts spatio-temporal 
features through temporal convolutional network (TCN) 
blocks. Then, the two-stream hybrid spatio-temporal 
features are fed into the STAFM, aiming to capture inter-

domain correlation and complementarity, and then extract 
more discriminative fusion features. Finally, the fused 
features are passed into the CM to predict the category of 
the gesture, and the joint loss function is applied to train 
the model. Next, the proposed TS-HSTFNet framework's 
individual modules are described as follows:

1) MSTCM: The model acquires spatio-temporal 
features across various sensory domains through the 
implementation of convolutional blocks tailored to 
distinct scales. Specifically, suppose the input raw sEMG 
signal is denoted as X = [x1, …, xN ]∈RN×V×T×C. Here, 
N represents the number of samples, V is the feature 
dimension (initially set to 1), T denotes the time 
dimension, and C is the number of channels. Initially, 
convolutional kernels of varying sizes are applied to 
perform multi-scale convolutional operations Fi on the 
reshaped signal X∈RN×1×C×T to extract temporal 
features at distinct levels:

ì

í

î

ïïïï

ïïïï

F1:X ® FT1ÎRN´V´C´T1

F2:X ® FT2ÎRN´V´C´T2

F3:X ® FT3ÎRN´V´C´T3

(1)

where FT1, FT2, FT3 are the temporal features obtained 
from three different scales of convolution operations. T1, 
T2, T3 represent the temporal dimension of the output, and 
V(V=64) is the feature dimension of the output. 
Subsequently, the ReLU activation function and an 
average pooling layer are utilized to augment the 
network's nonlinear capabilities. Ultimately, the three 
temporal feature FT1, FT2, FT3 are fused via a 
concatenation operation to yield the temporal features 
FMT ∈RN´Vt´C´T, T=T1+T2+T3, which is then subjected to 
batch normalization:

FMT=BN(Concat(FT1, FT2, FT3)) (2)

nodes V. Each element aij in A signifies the strength of the 
coupling between nodes i and j .

In order to evaluate the functional connectivity 
between any two electrode channels, we propose a new 

method for adaptive dynamic learning of relationships 
between neighboring nodes. This mechanism assigns 
weights to all edges in the graph so that the model can 
pair information from between different edges and learn 
here, Concat (.) denotes the concatenated temporal 
feature vector, which improves generalization by 
integrating features across various time scales. BN (.) 
denotes batch normalization operation.

Next, we reshape the shape of FMT to FMST∈RN´Vt´C´T 
and then apply three convolution kernels with a kernel 
size of (k, k) and dilation rate d=2 to perform dilated 
convolution and ReLU operations on it to further expand 
the sensory field and obtain the spatio-temporal features 
F1

MST ∈ iN´V1´T´C, F2
MST ∈ iN´V2´T´C and F3

MST ∈ iN´V3´T´C. 
Finally, the output spatio-temporal and temporal features 
FMT are concatenated and batch normalized to obtain the 
final spatio- temporal feature FMST ∈RN´V ́ T´C, V=V1+
V2+V3:

FMST=BN(Concat(F1
MST, F2

MST, F3
MST, FMT)) (3)

2) DSTGCN: Recognizing that the movement of 
gestures relies heavily on the spatial connectivity 
between electrodes. This study introduces an adaptive 
dynamic graph-based DSTGCN to capture this dynamic 
spatial connectivity information. Specifically, an 
undirected weighted graph G= (V, A) is utilized, with V=
{v1, v2, …, vn} representing the set of vertices comprising 
n nodes. The adjacency matrix A= (aij)n×n delineates the 
weights of the edges connecting these their weights 
through a back-propagation mechanism during training. 
First, an adjacency matrix A∈iC×C is randomly initialized, 
where the value of the (i, j) -th element indicates the 
coupling strength between the i -th electrode and the j -th 

Fig.1 Network of the structure of TS-HSTFNet
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electrode channel. The adjacency matrix A indicates the 
correlation between each channel, taking into account 
strength. The matrix A is then encoded using the Tanh 
nonlinear activation function to simulate the 
dependencies between the different channels as shown 
below:

A%dd=σ(W2δ(W1A%)) (4)

where A%∈ iC×C is vectorized by A,W1 ∈i( )C ´C
r

(́C´C)
 and 

W2 ∈ i
(C´C)́ ( )C ´C

r  are  the weight  matr ices ,  δ  (·)  and 
σ (·) are the ELU and Tanh functions, respectively, and r 
is the reduction ratio. Thus, the tight neighbor matrix 
Add ∈ iC´C is obtained by reshaping A%dd ∈ i(C´C)́ 1, where 
the (i, j) -th element value is learnable at the weight 
update and maps the dependencies between the i -th 
electrode and j -th electrode channel. We then employ the 
rectified linear unit (ReLU) to penalize weak channel 
coupling to obtain the nonnegative adjacency matrix Ads. 
Ultimately, we construct an autonomously learnable 
graph structure that accurately captures critical node 
information through dynamic adaptive tuning.

To fully utilize the temporal information in the data, 
we incorporate TCN blocks and multiple residual 
connections based on the dynamic graph convolution. 
This design strategy not only enables DSTGCN to 
capture the local dependencies of the data in the temporal 
dimension but also accurately captures the dynamic 
evolution characteristics of the data in the spatial 
dimension. Assuming the input is X= [x1, … , xN] ∈
RN×V×T×C, the update process of each layer of DSTGCN 
can be defined as:

FDST=TCN(σ(AdsXW))+X,FSTD∈RN×V'×T×V (5)
where TCN(·) denotes TCN layer, σ(· ) denotes the Relu 
activation function, W is the weight of the convolution 
layer. In this paper, we set the number of DSTGCN layers 
to 6 to extract spatio-temporal features from the 
preprocessed sMEG signal.

3) STAFM: In order to effectively fuse global and 
local spatio-temporal features and integrate  
complementary information between different feature   
domains, we propose the STAFM module. The STAFM  
module addresses the issue of pattern collapse, which can 
arise from the inconsistency in the distributions of multi- 
feature domain, thereby ensuring the adequate fusion of 
information from these domains. Specifically, we extract  
local spatio-temporal features FMST from the MSTCM 
and global spatio-temporal features FDST from the 
DSTGCN. Integration of FMST and FDST yields the

FST = Ft e As (6)
where FST denotes the outputspatio-temporal feature.

Finally, the spatio-temporal attention-weighted 
feature FST is added to the original fusion feature Ffused 
and normalized, and then fed into the feed-feature Ffused     
as input, and subsequently spatio-temporal attention is 
applied to Ffused to enhance the characterization capability 
of the feature.

First, we use adaptive maximum pooling and 
adaptive average pooling to independently obtain the 
maximum and average values for each channel in the 
feature map Ffused. These two values are then fed into  
the convolutional layer to learn the channel weights 
Wmax and Wmax:

ì
í
î

Wmax =Conv(δ(Conv(Maxpool(Ffused ))))

Wavg =Conv(δ(Conv(Avgpool(Ffused ))))
(7)

where Conv(· ) denotes the convolution operation, 
Maxpool(· ) denotes the adaptive maximum pooling 
operation, Avgpool(· ) denotes the adaptive average 
pooling operation and δ (· ) denotes the Relu activation   
function. After that, the two learned weights are summed 
and the final channel attention weights AC are generated  
by the Sigmoid function and applied to the original  
feature map Ffused to adjust the contribution of each 
channel:

AC = σ (Wmax +Wavg) (8)
Ft = Ffused e AC (9)

where Ft denotes the output temporal feature map and e 
denotes the element-by-element multiplication.

Next, the maximum and average values of each 
channel are extracted from Ft and spliced over the 
channel dimensions. Then, the spatial attention weights 
are learned by a 2D convolutional layer Ws:

Ws=Conv (Concat (max(Ft), avg (Ft))) (10)
where max (· ) and avg (· ) denotes the maximum and 
average values of each channel are extracted from Ft, 
respectively.

The final spatial attention weights AS were 
subsequently obtained by a Sigmoid function and applied 
to the temporal feature map Ft to adjust its spatial 
dimensions:

AS = σ(WS) (11)
forward network (FFN) to obtain the fusion features Ff :

Ff = (FFN (FST 田 Ffused))田 (FST田 Ffused) (12)
where 田 denotes element-wise addition.

4) CM: Finally, we use two residual convolutional 
classification prediction. The final high-level feature 
FCM is obtained by feeding Ff into the CM. We set the 
filter size of the residual convolution layer to 1×1 and  
strides of 2, and the kernel size of the average pooling 
layer to [10,4]:

FCM = Conv_res (Avgpool (Ff)) (13)

where Conv_res (·) denotes the convolution operation with 
residual structure and Avgpool (· ) denotes the average 
pooling operation.

2.2 Recognition Model

Since we perform spatio-temporal feature extraction 
from different angles of sEMG, single peak recognition is 
performed first to ensure that the features extracted by the 
encoder contribute to the recognition and thus support 
further feature fusion in the fusion module. The 
recognition process uses cross-entropy (CE) to obtain the 
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final loss:
VMST = view (Avgpool (Conv (FMST))) (14)

LMST = CE (VMST, Y) (15)

VDST = view (Avgpool (Conv (FDST))) (16)

LDST = CE (VDST, Y) (17)

where VMST and VDST are the features extracted by 
MSTCM and DSTGCN, respectively, and Y is the true 
label. For the fused advanced features FCM, the 
recognition process is shown in Eq. (13):

LF = CE (FCM, Y) (18)

2.3 Total Loss Function

To further improve the generalization ability and 
classification accuracy of the model, we used joint loss to 
train the model and updated our final loss function to:

L = αLMST + βLDST + LF (19)

where LMST , LDST and LF are defined in Eq. (15), Eq. (17) 
and Eq. (18), respectively. α and β are the interacation 
weights that determine the contribution of each 
regularization component to the overall loss L.

2.4 Algorithm For TS-HSTFNet

Suppose we are given a labeled gesture recognition 
dataset {X, Y} = {xi, yi}N

i=1, where X = [x1, … , xN] ∈ 
RN×1×T×V represents multi-channel sEMG signals and Y = 
[y1, …, yN]∈ RN represents true labels. First, we obtain the 
convolutional features FMST by passing the input xi 
through MSTCM according to Eq. (1)-(3). Subsequently, 
the feature FDST after DSTGCN is obtained according to 
Eq. (4)-(5). Then, FMST and FDST are integrated into fusion 
features based on Eq. (6) - (11). Finally, the final high-
level feature FCM is obtained by feeding Ff into CM 
according to Eq. (13). In addition, we calculate the total 
loss of training L based on Eq. (14)-(19) and use this to 
guide the parameter updates. Algorithm 1 provides the 
detailed steps of the model optimization process.

In this paper, we use the cross-entropy loss function 
as a loss function to measure the difference between the 
model's predicted label and the true label. The formula is 
as follows, here we assume that the true label is Y = 
[y1, …, yN ]∈ RN:

Lce = −Σyi,c log (pi,c) (20)

where M is the total number of categories, yi,c is the one-
hot encoding of the true label of the i -th sample if the 
sample belongs to category c, yi,c = 1, otherwise yi,c = 0. 
pi,c is the probability that the model predicts that the i 
-th sample belongs to category c. The training process in 
this paper utilizes the adam optimizer containing 30 
epochs initialized with a learning rate of 0.001 and a 
batch size of 64. All networks in this paper were 
implemented using Python 3.9 and PyTorch 2.0.1. 
Training and evaluation were performed on NVIDIA 
GeForce GPUs (RTX 4060).

3 Experimental data and Processing

3.1 Experimental data

The Ninapro database, widely utilized in gesture 
recognition, uses up to four multi-channel physiological 
signal acquisition devices to gather sEMG data and 
consists of 10 distinct sub-datasets. In this paper, sub- 
datasets Ninapro DB2 and DB5 are selected to evaluate 
the classification performance of the proposed TS- 
HSTFNet model. Ninapro  DB2[26] records 12-channel 
sEMG signals at a sampling frequency of 2000 Hz using 
a Delsys Trigno wireless system. It contains 49 gestures 
from 40 healthy subjects (as shown in Fig. 2 of Exercise 
B, C, D), with each gesture repeated six times. Ninapro 
DB5[27] uses two Thalmic Labs MYO armbands for 
sEMG acquisition at a sampling frequency of 200 Hz. It 
contains 52 gestures from 10 healthy subjects (as shown 
in Fig. 2 of Exercise A, B, C), with each gesture repeated 
ten times.

3.2 Data Processing

Due to the low amplitude, low frequency, high 
noise, and instability of sEMG signals, precise 
preprocessing steps are essential. To accurately extract the 
envelope of the sEMG signal, a first-order Butterworth 
low-pass filter with a cutoff frequency of 1 Hz is used to 
filter out high-frequency noise, and a 50- Hz notch filter 
is applied to reduce industrial frequency interference. 
Additionally, to further suppress noise, the moving 
average method is used to smooth the sEMG signal. 
Finally, Min-Max normalization is applied to normalize 
the data and reduce gradient explosion during training.

Given the real-time requirements of gesture 
recognition, a window length of no more than 300ms is 

Algorithm 1 The Optimizing Procedure of the TS- HSTFNet

Input: the labeled gesture recognition dataset based on sEMG 
signals {X, Y} = {xi, yi}

N
i=1, the number of training sessions Ep, the 

batch size for each training session Ba, and the model hyper 
parameters θ .
Output: optimal set of model parameters θ.
Initialize: Parameters in the proposed TS- HSTFNet θ.
For e = 1: Ep do 
   for b = 1: Ba do
  Extract a batch of samples xe,b and ye,b from {X, Y}.
  Based on Eq. (1)-(3) input xe,b into MSTCM to compute the 
multi-level spatio-temporal features FMST.
  The dynamic spatio-temporal features FDST are computed by 
inputting xe,b into DSTGCN according to Eq. (4)-(5).
  According to Eq.(6)-(12), FMST and FDST are integrated and 
fed to STAFM to obtain the fusion feature Ffused.
  The final high-level feature FCM  is computed by feeding 
Ffused into the CM according to Eq.(13).

Calculate the  final loss L according to Eq.(14)-(20).
Based on the loss function, the model parameters are 

updated by the Adam optimizer θ.
end for 

end for
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typically chosen for analysis[28]. sEMG signals are 
divided into active and resting segments. Considering the 
varying lengths of active segment waveforms, a sliding 
window is used to calculate the energy and identify the 
maximum energy window (MEW) in the active segment 
on multi-channel sEMG signals. Additionally, we use a 

sliding window sampling method to construct time series 
samples from the active segment region, increasing the 
sample size. In this paper, we select a window length of T 
milliseconds, sliding once every S milliseconds, as shown 
in Fig.3. In this paper, we set T to 50 ms, 100 ms, 150 ms, 
200 ms, 250 ms and S to 25 ms.

Additionally, a sample size balancing operation is 
performed for each category to mitigate the impact of 
sample size imbalance on classification results. 
Following the data partitioning strategy outlined in the 
study[29], repetitions 1, 3, 4, and 6 of each gesture are 
used as the training set for the NinaPro DB2 and DB5 
datasets, while repetitions 2 and 5 are used as the test set.

To evaluate the performance of the proposed 
method , the accuracy (Acc), precision (Pre), recall (Rec), 
and F1-score (F1) of the gesture recognition were 
calculated as follows.

Acc =
TP +TN

TP +TN + FP + FN
(21)

Pre =
TP

TP + FP
(22)

Rec =
TP

TP + FN
(23)

F1 =
2Pre ´Rec
Pre +Rec

(24)

where TP, TN, FP, and FN correspond to true positive, 
true negative, false positive, and false negative, 
respectively.

4 Results and discussion

4.1 Feasibility analysis to TS-HSTFNet

4.1.1 Ablation experiments
In this subsection, we conduct ablation studies on 

Ninapro DB2 and DB5 datasets to verify the validity and 

Fig.2 Gesture types in Ninapro DB2 and DB5 datasets.A,B:finger.C:wrist.D: grip

Fig.3 Pretreatment process. MEW denotes the maximum energy window
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significance of the TS-HSTFNet model's components. The 
experimental results are presented in Table 2. The 
models compared include: (1) TS- HSTFNet w/o DSTGCN: 
with the DSTGCN module removed. (2) TS-HSTFNet w/
o MSTCM: with the MSTCM module deleted. (3) TS-
HSTFNet w/ Add: with the fusion method changed from 
STAFM to additive fusion. (4) TS-HSTFNet w/ Concat: 
with the fusion method changed from STAFM to cascade 
fusion. (5) TS-HSTFNet: the proposed model.

The results of the ablation experiments from Table 1 
show that the TS-HSTFNet model has significant 

enhancement compared to other models on both Ninapro 
DB2 and Ninapro DB5 datasets. Compared to TS-
HSTFNet w/o DSTGCN and w/o MSTCM, our model 
shows significant improvement, indicating the 
effectiveness of the dual-stream spatio- temporal feature 
framework. Furthermore, comparing two primary feature-
level fusion strategies demonstrates that traditional fusion 
has a limited ability to capture complex correlations 
among multiple features. In contrast, STAFM facilitates 
spatio- temporal feature interactions, capturing potential 
dependencies among features more effectively.

To further explore the performance of different 
ablation models, we analyzed the ROC curves of the five 
ablation models, as shown in Fig. 4. On the Ninapro DB2 
dataset, our model achieved the highest AUC value of 
0.9861, with improvements of 0.0776, 0.0019, 0.0009, 
and 0.0002 over TS-HSTFNet w/o DSTGCN, w/o 
MSTCM, DGTC-MFNe w/ Add, and w/ Concat, 
respectively. Similarly, on the Ninapro DB5 dataset, the 
TS-HSTFNet model demonstrates its superiority with an 
AUC value of 0.9928, improving by 0.0062, 0.0059, 
0.003, and 0.004, respectively, compared to the 
aforementioned ablation models. These results indicate 
that the TS-HSTFNet model performs excellently in 
gesture recognition tasks. The three functional modules, 
DSTGCN, MSTCM, and STAFM, all significantly 
contribute to the model's performance. This confirms the 
TS-HSTFNet model's ability to capture and fuse complex 
sEMG signal features and its potential in gesture 
recognition applications.
4.1.2 Feature Visualization (t-SNE)

In this paper, t-SNE technique is used to visualize 
the high-level features extracted from TS-HSTFNet 
model on Ninapro DB2 and Ninapro DB5 datasets, 
aiming to visually assess the spatial distribution of these 
features and their discriminative ability. According to the 
principle of feature distribution, a greater distance among 
different feature clusters indicates stronger uniqueness of 
the features, while a tighter cohesion within the same 
feature cluster reflects better consistency of the 

features[29]. Fig. 5 depicts the spatial distribution of 
feature clusters for the 4th, 13th, and 34th gestures in the 
Ninapro DB2 dataset and the 2nd, 15th, and 32nd 
gestures in the Ninapro DB5 dataset, respectively. It can 
be seen that there is a significant overlap among different 
feature clusters when no fusion strategy is introduced, as 
shown in Fig. 5(a) and 5(c). Introducing the STAFM 
strategy significantly increases the distance between 
different feature clusters and improves clustering within 
the same feature cluster, as depicted in Fig.5(b) and 5(d). 
These observations highlight the crucial role of the 
STAFM strategy in enhancing feature fusion capability.

4.2 Performance analysis of TS-HSTFNet

4.2.1 Different datasets
TS-HSTFNet demonstrates outstanding recognition 

performance on both the Ninapro DB2 and DB5 datasets, 
achieving accuracies of 84.96% and 88.08%, 
respectively. This indicates that the model maintains and 
improves its performance with more complex datasets, as 
shown in Table 2. In the Ninapro DB2 dataset, the TS-
HSTFNet model achieves an accuracy of 84.96%, a 
precision of 85.21%, a recall of 84.95%, and an F1-score 
of 84.93%. Similarly, in the Ninapro DB5 dataset, the TS-
HSTFNet model achieves an accuracy of 88.08%, 
aprecision of 88.2%, a recall of 88.07%, and an F1-score 
of 88.05%. The results show that the model's 
performance in terms of accuracy, precision, recall, and 
F1-score is consistent across both datasets, demonstrating 

Table 1 Experimental study ofablation of TS-HSTFNet model on Ninapro DB2 and Ninapro DB5 datasets

Method

TS-HSTFNet w/o DSTGCN

TS-HSTFNet w/o MSTCM

TS-HSTFNet w/ Add

TS-HSTFNet w/ Concat

TS-HSTFNet

TS-HSTFNet w/o DSTGCN

TS-HSTFNet w/o MSTCM TS-HSTFNet w/ Add

TS-HSTFNet w/ Concat

TS-HSTFNet

Dataset

Ninapro DB2

Ninapro DB5

Acc (%)

81.84

76.51

82.02

83.08

84.96

81.72

83.79 83.38

85.49

88.08

Pre(%)

81.79

76.23

82.06

82.13

85.21

81.48

83.48 83.33

85.59

88.24

Re(%)

81.78

75.82

82.01

82.17

84.95

81.28

83.34 83.16

85.41

88.07

F1 (%)

81.74

75.76

81.97

82.09

84.93

81.23

83.25 83.12

85.39

88.05

59



Ruiqi Han et al: A Two-Stream Hybrid Spatio-Temporal Fusion Network For sEMG-Based Gesture Recognition

good generalization performance.
To comprehensively evaluate the TS-HSTFNet 

model's ability to classify different gestures, we calculate 
confusion matrices for the Ninapro DB2 and DB5 
datasets, as shown in Fig.6. For the Ninapro DB2 dataset, 
our model's classification accuracy is above 80% for most 
gestures. In the Ninapro DB5 dataset, our model achieves 

classification accuracies above 85% for most gestures. 
This indicates that the TS-HSTFNet model accurately 
classifies most gestures. However, analysis of the 
confusion matrix reveals that recognition accuracies for 
the 10th, 28th, and 29th gestures in the Ninapro DB2 
dataset are below 70%. Similarly, the 8th and 9th gestures 
in the Ninapro DB5 dataset have accuracies below 75%.
4.2.2 Different models

In order to evaluate the performance advantages of 
our model, we designed a series of comparison 
experiments and the results are shown in Table 3. In these 
experiments we compare them with four models on the 
Ninapro DB2 database, which include TDCT[29], TC-
HGR[30], MLP-Mixer[31], and CviT[32]. In addition, we 

Fig.4 Comparison of AUC curves of ablation experimental
studies on different datasets. (a) Ninapro DB2 dataset (b) 

Ninapro DB5 dataset

Fig.5 Spatial distribution of features. Different colors 
represent different categories

Table 2 Performance metrics of the TS-HSTFNet model for 
different datasets

Dataset

Ninapro DB2

Ninapro DB5

Classes

49

52

Subjects

40

10

Acc 
(%)

84.96

88.08

Pre
(%)

85.21

88.24

Re
(%)

84.95

88.07

F1
(%)

84.93

88.05

Fig.6 (a) Confusion matrix of TS-HSTFNet model under 
Ninapro DB2 dataset; (b) Confusion matrix of TS-HSTFNet 

model under Ninapro DB5 dataset
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also compare them with five models on the Ninapro DB5 
database, TDCT[29], TC-HGR[30], MLP- Mixer[31], 
CviT[32], and SE-CNN[33] compared. These results fully 
demonstrate that the model presented in this paper aims 
to be significantly competitive in gesture recognition 
tasks. Our model significantly outperforms the feature 
extraction-based machine learning modeling approach[31] 
in an end-to-end manner. Additionally, some SOTA 
methods[29,30,33] mainly focus on extracting temporal or 
spatial features from sEMG signals. They fail to fully 
exploit multi- feature fusion advantages and neglect 
higher-order semantic information by not integrating 
different feature information. In particular, a 
convolutional visual transformer (CviT) with stacked 

ensemble learning proposed in the literature[32] extracts 
temporal and spatial features of sEMG signal sequences 
and fuses them with the Transformer for parallel training. 
This model is closest to ours. However, the CviT model 
merely utilizes convolution and Transformer modules for 
extracting temporal and spatial features without 
considering the spatial dynamics of gestures. In addition, 
the CviT model only utilizes the cascade fusion method 
to fuse multiple features, and does not consider the 
significant effect of the fusion strategy on the model 
performance. In contrast, our proposed method not only 
integrates the temporal dynamics and spatial dependence 
of sEMG but also pays attention to the potential 
correlation between features.

4.3 Key influencing factors in TS-HSTFNet

4.3.1  Impact of different-sized convolutional 
kernels

In the multi-scale spatio-temporal convolution 
module (MSTCM), the different sizes of convolution 
kernels determine theirrespective receptive field sizes, 
which are decisive for spatio-temporal feature capturing. 
Choosing the appropriate size of the convolution kernel is 
key to improving the model's performance in spatio-
temporal feature extraction. To investigate the role of 
different convolution kernel sizes in feature extraction, 
we designed experiments with three kernel size 
combinations: [7, 5, 3], [9, 7, 5], and [11, 9, 5]. 
Subsequently, we conducted experiments with these 
convolutional kernels on two publicly available datasets, 
Ninapro DB2 and Ninapro DB5, to reveal how different 
kernel scales affect the model's ability to capture spatio-
temporal information.

The experimental results are shown in Fig. 7, for 
both Ninapro DB2 and DB5 datasets, the model achieves 
optimal performance when the convolution kernel size is 
[9, 7, 5]. The results show that larger convolutional 
kernel sizes help capture local spatial features more 

comprehensively, significantly enhancing the model's 
ability to recognize gesture features. However, a 
convolutional kernel that is too large may introduce 
unnecessary information, while one that is too small may 
limit the model's expressive
4.3.2 Impact of sliding window length

In addition, this experiment delves into the specific 
impact of sliding window length on performance in a 
gesture recognition system. Given that window lengths 
longer than 300 ms increase parameter counts and 
processing delays, we focus on analyzing lengths shorter 
than 300 ms. After referring to previous studies [30,31] and 
weighing the computational cost against real-time 
requirements, we selected 50 ms, 100 ms, 150 ms, 200 ms, 
and 250 ms as the key parameters for our experiments. 
The experimental results in Fig. 8 demonstrate that 
recognition accuracy increases with longer window 
lengths, suggesting that longer windows capture richer 
sEMG signal features and enhance model recognition 
capability. However, we also observe that the recognition 
accuracy instead decreases when the window length 
exceeds 200 ms. A window length of 200 ms yields the 
highest recognition accuracies of 84.96% and 88.08% for 

Table 3 Comparison with other models

methodologies

TC-HGR[30]

CviT[32]

TDCT[29]

MLP-Mixer[31]

Ours

TC-HGR[30]

CviT[32]

SE-CNN[33]

TDCT[29]

MLP-Mixer[31]

Ours

timing

2022

2022

2024

2024

-

2022

2022

2023
2024

2024

-

data set

Ninapro DB2

Ninapro DB5

window size

200ms

200ms

200ms

200ms

200ms

200ms

200ms

260ms
200ms

200ms

200ms

Number of gestures

49

49

49

49

49

52

12/17

53
52

52

52

accuracy

77.43%

80.02%

80.68%

80.74%

84.96%

68.61%

76.83%/73.23%

87.42%
72.83%

73.39%

88.08%
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the Ninapro DB2 and Ninapro DB5 datasets, respectively. 
This phenomenon may be attributed to excessive window 
length introducing unnecessary noise, which interferes 
with the precise feature extraction of key features and 
affects model recognition accuracy.

The two-stream spatio-temporal features to further 
enhance the performance of the model. Through 
extensive experiments on Ninapro DB2 and Ninapro DB5 
datasets, we demonstrate the superior recognition 
capability of the TS-HSTFNet model relative to various 
ablation models and state-of-the-art methods. The results 
validate that our model excels in extracting informative 

features from sEMG signals and enhancing gesture 
recognition performance. Our findings clearly 
demonstrate the effectiveness of jointly considering 
spatio-temporal features for gesture recognition. This 
discovery opens up new approaches for future research in 
the field of gesture recognition.

5 Conclusion

In this paper, we propose a novel two-stream hybrid 
spatio-temporal feature fusion network named TS-
HSTFNet. Our model integrates two-stream spatio-
temporal features of sEMG signals effectively to improve 
the accuracy of gesture recognition. The DSTGCN 
module learns correlations among sEMG nodes and 
captures dynamic connectivity patterns over time in an 
adaptive manner. Meanwhile, MSTCM focuses on the 
temporal dependence of sEMG and employs multi-scale 
convolution to explore both the local and global 
importance of each period of sEMG and extract more 
representative spatio-temporal features. Finally, STAFM 
integrates ability, affecting recognition accuracy. Based 
on these results, this study adopts the convolution kernel 
size configuration of [9, 7, 5] in all experiments to ensure 
that the model's generalization ability is maintained while 
enhancing recognition accuracy.
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