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Abstract: The proposed hybrid optimization algorithm integrates particle swarm optimizatio 
(PSO) with Ant Colony Optimization (ACO) to improve a number of pitfalls within PSO 
methods traditionally considered and/or applied to industrial robots. Particle Swarm 
Optimization may frequently suffer from local optima and inaccuracies in identifying the 
geometric parameters, which are necessary for applications requiring high-accuracy 
performances. The proposed approach integrates pheromone-based learning of ACO with the 
D-H method of developing an error model; hence, the global search effectiveness together with 
the convergence accuracy is further improved. Comparison studies of the hybrid PSO-ACO 
algorithm show higher precision and effectiveness in the optimization of geometric error 
parameters compared to the traditional methods. This is a remarkable reduction of localization 
errors, thus yielding accuracy and reliability in industrial robotic systems, as the results show. 
This approach improves performance in those applications that demand high geometric 
calibration by reducing the geometric error. The paper provides an overview of input for 
developing robotics and automation, giving importance to precision in industrial engineering. 
The proposed hybrid methodology is a good way to enhance the working accuracy and 
effectiveness of industrial robots and shall enable their wide application to complex tasks that 
require a high degree of accuracy.
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1 Introduction

Geometric parameter errors have a substantial 
impact on the positioning accuracy of industrial robotics, 
with a primary cause of localization errors being the 
deformation of connecting rods[1,2]. The compensation for 
these errors typically entails parameter identification, 
correction, data acquisition, and error modeling. The 
Denavit-Hartenberg (D-H) and Modified D-H (MDH) 
frameworks are among the most frequently employed 
models for error modeling in robotics[3]. Accurate 

parameter identification is the primary obstacle in error 
compensation, and numerous researchers have investigated 
a variety of optimization strategies to improve precision. 
This issue has been addressed through the development 
of numerous algorithms. Marquardt et al. introduced the 
Levenberg-Marquardt (L-M) algorithm to estimate robot 
error parameters. However, its accuracy is restricted by 
its iteration inefficiency and dependence on initial 
parameter selection[4].

Fang Lijin et al. implemented a quantum particle 
swarm algorithm to compensate for robotic errors; 
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however, its computational complexity renders it 
unsuitable for engineering applications[5]. Robert et al. 
investigated a simulated annealing algorithm; however, 
its efficiency was diminished by its lengthy iteration 
periods and slow convergence[6]. In the meantime, Zhong 
et al. implemented neural networks to mitigate 
localization errors in PUMA robots. However, this 
method necessitates a substantial quantity of training data 
and substantial computational resources, rendering real-
time applications difficult[7]. While these methods have 
their advantages, they also have significant drawbacks 
when it comes to resolving industrial robot localization 
errors. The prevalence of Particle Swarm Optimisation 
(PSO) can be attributed to its simplicity, efficient 
iterations, and ease of implementation[8]-[9]. Nevertheless, 
conventional PSO frequently experiences premature 
convergence and inadequate accuracy in identifying 
geometric error parameters, resulting in suboptimal 
outcomes. The population dynamics mechanism of PSO 
and the pheromone-based learning mechanism of Ant 
Colony Optimisation (ACO) are integrated in this study 
to resolve these challenges. The hybrid algorithm that has 
been proposed improves the local search capability of 
PSO and utilises the global exploration efficacy of ACO 
to prevent the optimisation process from becoming 
ensnared in local optima.[10] to[12].

The BWPSO-RP algorithm, which is a novel 
hybridization-based stochastic perturbation PSO 
algorithm with a linearly decreasing inertia weight, is 
also introduced by the proposed approach. This method 
enhances population diversity and prevents early 
convergence by drawing inspiration from the stochastic 
behaviour of hybrid PSO and artificial fish swarm 
algorithms[13]-[15]. The global search capability is further 
improved by the linearly decreasing inertia weight, which 
guarantees improved convergence accuracy in complex 
error models[16]. Ant Colony Optimisation (ACO) is a bio-
inspired optimisation algorithm that employs pheromone-
based information sharing to efficiently investigate global 
solutions in combinatorial optimisation problems[17]. 
Although PSO is extremely effective in continuous 
optimisation tasks, its efficacy is improved by the 
integration of ACO's pheromone-guided search, which 
enhances both exploration (global search) and 
exploitation (local search) processes[18]. This combination 
prevents PSO from becoming ensnared in suboptimal 
solutions, resulting in improved error parameter 
identification. Zhang et al. (2018) demonstrated that the 
accuracy of parameter identification in autonomous 
systems is improved by ACO-PSO hybrids, as ACO 
accelerates convergence and increases population 
diversity[19]. Furthermore, the detection of global optima 
in intricate robotic error models, such as the D-H 
framework, is enhanced by adaptive weight adjustments 
in PSO, which are guided by pheromone trails in ACO[20].

Recent research has underscored the efficacy of 
hybrid ACO-PSO algorithms in overcoming the 

constraints of conventional optimisation techniques. 
ACO-PSO hybrids have been effectively implemented by 
researchers in six-degree-of-freedom (6-DOF) robots. In 
this approach, ACO initialises global parameters, while 
PSO iteratively refines geometric parameters, resulting in 
substantial reductions in positioning and orientation 
errors[21]. In addition, Wang et al. (2021) demonstrated 
that the D-H model's convergence is expedited, and 
parameter identification accuracy is improved by 
pheromone-guided emphasis on critical geometric 
parameters[22]. These studies verify that hybrid ACO-PSO 
algorithms enhance convergence speed, enhance global 
search efficiency, and fortify local search capabilities, 
rendering them a reliable option for robotic error 
compensation. The objective of this investigation is to 
verify the efficacy of the proposed ACO-PSO hybrid 
algorithm through simulation experiments. The 
algorithm's capacity to improve geometric parameter 
identification and localisation error compensation is 
exhaustively examined through the application of the D-
H error model. The findings of this investigation will 
offer valuable insights into hybrid optimization 
methodologies for robotic calibration and create new 
opportunities for high-precision industrial applications.

There are 5 sections in all in this manuscript. Section 
1 shares the background related to current techniques 
implementing Precise Localization and Geometric Error 
Reduction in Industrial Robots. Section 2 shares the 
dynamic model of KR10R1420 robot (KUKA 
Deutschland GmbH, Augsburg, Germany) and D-H 
representation. One may find the details of our proposed 
algorithm and methodology in section 3 whereas section 
4 discusses the simulation results along with an 
exhaustive explanation. Last but not least is the 
conclusion section of the manuscript, which is described 
in Sect. 5 together with some future recommendations 
and directions.

2 D-H Model of KR10R1420 Robot

This work utilized a KUKA KR10R1420 robot, a 
six-degree-of-freedom tandem industrial robot featuring 
six rotary joints, as seen in Fig. 1[17]. The DH model 
employed in industrial robotics, together with the 
coordinate system of the proposed robot, is formulated 
using the DH approach, as seen in Figure 2 below[17]:

Figure 1 illustrates the KR10R1420 robotic arm, 
emphasizing its six rotational joints (A1 to A6). Every 
joint provides one degree of freedom (DOF), allowing the 
robot to execute intricate spatial maneuvers. The numbered 
axes (A1-A6) denote the principal rotating axes of the 
robot, essential for delineating the robot's kinematic chain 
and comprehending the propagation of positional and 
orientation faults throughout its structure. This visual 
depiction corroborates the D-H parameterization employed 
in the error model.

The illustration in Figure 2, depicts the coordinate 
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system corresponding to each joint of the KR10R1420 
robot, in accordance with the Denavit-Hartenberg (D-H) 
convention. The axes Xi Yi and Zi ( for i = 1 to 6) 
represent the local reference frames for each link and 
joint. These frames delineate the geometric parameters, 
including link lengths, offsets, and joint angles, which are 
crucial for kinematic modeling and error detection. The 
transformation matrices obtained from these parameters 
constitute the foundation of the robot's geometric error 
model. In the context of our proposed research, these 
drawings illustrate the fundamental geometric and 
kinematic configuration that the enhanced particle swarm 
algorithm (incorporating ACO principles) would refine. 
Identifying and rectifying geometric error parameters can 
substantially improve the robot's positioning accuracy, as 
demonstrated by the simulation trials presented in the 
research. The proposed algorithm's validity was 
confirmed using the KR10R1420 robot produced by 
Kuka Robotics Ltd. The parameters of the DH model for 
the KR10R1420 robot are presented in Table 1. The 
inaccuracies of the geometric parameters are presented in 
Table 2[17].

The error is randomly generated within the intervals 
of [-0.25, 0.25] mm and [-0.05, 0.05] rad. This error value 
is incorporated into the nominal geometrical parameters 
of the robot presented in Table 1 to derive the actual joint 
angle. Subsequently, the difference between the actual 
and theoretical joint angles is calculated to determine the 

adaptation value. Moreover, the fitness function used is 
shown in equation (1) below:

F =min (∑
i=1

N

( (δPxi )2 + (δPyi )2 + (δPzi )2 ) (1)

In the above equation (1), the term 'N' denotes the 
number of robot error sampling points, and in this paper, 
it is proposed as 20. F is function of (DaiDdiDaiDθi),
which represents the error ensemble of N points, When 
the robot traverses space, the disparity between the 
nominal position of each point and its real position is 
determined by sampling various points. The enhanced 
particle swarm algorithm is employed to ascertain the 
precise values of the error parameters, hence facilitating 
error compensation for the robot and enhancing the end 
positioning accuracy of the industrial robot. The fitness 
function in Equation (1) minimizes the cumulative 
positioning error by evaluating deviations in the x y and 
z coordinates, ensuring precise geometric parameter 
identification for industrial robots. Our hybrid 
optimization algorithm integrates Particle Swarm 

Fig.1 KR10R1420 Robot with six-degree-of-freedom

Fig.2 KR10R1420 Robot with Coordinate System

Table 1 Nominal geometric parameters of KUKA robot

jointi

1

2

3

4

5

6

ai/mm

150

610

20

0

0

0

αi /deg

-90

0

-90

90

-90

0

di /mm

450

0

0

660

0

160

θi /deg

-185-185

-155-35

-130-154

-350-350

-130-130

-350-350

Table 2 Geometric parameters errors of KUKA robot

jointi

1

2

3

4

5

6

∆ai/mm

-0.16

-0.04

-0.01

0.11

0.22

0.05

∆αi/rad

-0.01

0

0.03

-0.01

0.0

-0.02

∆θi /rad

-0.02

0.01

0.0

-0.03

0.01

-0.02

∆di /mm

0.18

-0.13

0.21

-0.06

0.05

0.08
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Optimization (PSO) with Ant Colony Optimization 
(ACO) to overcome PSO's limitations such as local 
optima trapping and accuracy issues. By incorporating 
pheromone-based learning from ACO, the approach 
enhances global search efficiency and convergence 
accuracy. Additionally, the Denavit-Hartenberg (D-H) 
method is utilized to refine error modeling, further 
improving kinematic precision. This integration results in 
a more robust and high-precision optimization 
framework, making it highly suitable for industrial robots 
requiring superior accuracy and efficiency

3 Proposed Algorithm

The conventional particle swarm optimization (PSO) 
approach is frequently employed to ascertain the 
geometric error parameters of industrial robots. 
Nonetheless, owing to its stochastic characteristics and 
the finite particle count within the swarm, Particle Swarm 
Optimisation frequently experiences premature 
convergence when addressing high-dimensional, 
constraint-based optimization challenges. The 
optimization of geometric error parameters entails a high-
dimensional search space, rendering the solution 
susceptible to convergence at local optima. To address 
these constraints, we present an augmented PSO 
algorithm that incorporates the principles of ant colony 
optimization (ACO), therefore enhancing both 
exploration and exploitation capabilities. The pheromone 
mechanism of ACO effectively directs agents towards 
optimal routes through collaborative reinforcement, 
facilitating thorough exploration of the search space. In 
our proposed integration, the global best particle (Pg) in 
PSO employs ACO-inspired pheromone trails to 
investigate new areas of the search space throughout each 
iteration. The pheromone value specifically affects the 
movement probability of the global best particle, enabling 
it to consider the historically ideal paths recognized by 
other particles. The procedure for updating Pg is as 
follows:

P new
g =Pg + α.pheromone (t ) .DX (2)

where α is a scaling factor, and pheromone(t) denotes the 
pheromone intensity at time t, while DX signifies the 
directional step size obtained from local particle 
interactions. This ACO-based approach enhances global 
search capacity by diminishing the probability of 
convergence at local optima. Furthermore, to mitigate the 
decline in diversity during the later phases of PSO 
convergence, ACO-inspired probabilistic path exploration 
is included at the population level. In each iteration, a 
selection of particles is randomly modified according to a 
probabilistic pheromone effect. The particle's new 
location is ascertained by:

Xnew =X.(1 + rand.pheromone (t )) (3)

Where rand is a random number within the interval 
between 0 and 1. The fitness of perturbed particles is 

compared with the global best particle, and higher fitness 
particles are used for updating pheromone trails. This 
stochastic perturbation ensures the population maintains 
diversity, thereby enhancing the exploration capability of 
the algorithm and preventing the solution from reaching 
premature convergence. We propose PSO by hybridizing 
ACO principles with an adaptive weight adjustment 
technique. In Particle Swarm Optimisation (PSO), inertia 
weight (w) is gradually decreased over iterations in order 
to balance the exploration and exploitation.

w =wmax -
T

Tmax
·(wmax -wmin ) (4)

In the above equation, T is the current iteration, 
while Tmax represents the maximum iteration. Tmax is the 
total number of iterations, w max is the beginning weight, 
and wmin is the ultimate weight. This ensures a smooth 
variation of particle velocity from a global search focus 
to a local search focus with the advancement of the 
algorithm.

The procedure of the proposed combined PSO-ACO 
algorithm begins with the initialization of the particle 
swarm, the ACO pheromone values, and the computation 
of the fitness values for all particles. Subsequently, the 
particle swarm is updated by modifying the velocity and 
position of the particles through the conventional PSO 
formula, including an adaptive weight adjustment 
mechanism that equilibrates exploration with 
exploitation. In global optimization, the position of the 
global best particle is enriched by ACO's pheromone-
guided behavior, and if its updated position improves the 
fitness value, it replaces the new global best. In order to 
maintain the diversity in the population, a set of particles 
is randomly perturbed using ACO-inspired stochastic 
behavior, and their fitness values are computed followed 
by updating the pheromone trails based on the best-
performing particles. The procedure iteratively persists, 
reiterating the particle swarm update, global optimization, 
and population-level diversification phases until a 
termination criterion is satisfied. Upon conclusion, the 
algorithm produces the global optimal solution along 
with the specified geometric error parameters of the 
industrial robot. The amalgamation of ACO's pheromone-
driven exploration with PSO's population-centric 
dynamics markedly enhances the algorithm's capacity to 
optimize geometric error parameters efficiently.

4 Simulation Results

The robot's geometric parameters are determined via 
the enhanced PSO algorithm through the integration of 
ACO in MATLAB software. Regarding the enhanced 
particle swarm selection: The population count is 200, 
with learning factors c1 and c2 both set to 1.49. The 
inertia weights are wmax=0.8 and wmin=0.4. The 
coefficient of variation for the populations during the 
algorithm's iterative process is pm=0.2. The coefficient for 
the iterative process of the globally optimal solution is 
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P = i, where i represents the current iteration number of 
the particle swarm, along with the direction. T is 
established at 200, representing the total number of 
iterations for the particle swarm. The step size is 
established at 2. The iteration limit is established at 200. 
Our proposed algorithm has been compared with another 
algorithm as well and is averaged across 6 iterations and 
the average fitness values for each algorithm are 
presented in Table 3 below:

The Average Adaptation metric in Table 3 represents 
the mean fitness value across multiple iterations for each 
algorithm, assessing its convergence behavior and 
optimization efficiency. It is calculated as:

Favg =
1
N∑i=1

N Fi (5)

where Fi   is the fitness value at the i-th iteration and N is 
the total number of iterations. A lower average adaptation 
value indicates a more effective algorithm in minimizing 
positioning errors and enhancing optimization precision. 
As seen in Table 3, WPSO is the weighted particle swarm 
algorithm, BPSO is the hybridization-based particle 
swarm algorithm (BPSO) and PSO + ACO is our 
proposed algorithm. Table 3 indicates that the 
conventional PSO algorithm achieves an average fitness 
of 5.39 across 6 iterations, representing the least effective 
iteration outcome. Secondly, the average fitness value of 
six iterations of the BPSO algorithm is 4.58, while the 
WPSO demonstrates a performance of 4.02. In contrast, 
the PSO with an integration of ACO algorithm proposed 
in this paper exhibits superior iteration efficacy, 
achieving an average fitness value of 3.12, representing a 
substantial enhancement in iteration precision relative to 
several other conventional particle swarm algorithms.

The iterative trend of the enhanced particle swarm 
technique is illustrated in Fig. 3. Table 3 illustrates that 
the enhanced particle swarm algorithm, integrated with 
ACO, exhibits superior convergence accuracy in updating 
speed and position information compared to the 
conventional particle swarm algorithm, as it optimizes 
both the optimal particles and the population's iterative 

process. The comparison of the X, Y, Z axis errors and 
absolute position error of the robot prior to and 
subsequent to the optimization of the enhanced particle 
swarm algorithm is as follows:

Figure 4 and 5 illustrate that prior to error 
compensation, the X, Y, Z axis errors of the industrial 
robot fluctuate between [-100, 150] mm, with a 
maximum error of approximately 150 mm. Conversely, 
following error compensation, the X, Y, Z axis errors 
oscillate between [-1.25, 0.75] mm, with a maximum 
error of around 0.75 mm. This indicates that the error 
along the X, Y, Z axes of the robot is substantially 
reduced after compensation using the enhanced PSO 
algorithm integrated with ACO.

Figures 6 and 7 illustrate that the absolute position 
error of the robot fluctuates between 10 mm and 45 mm 
prior to error compensation, with a maximum error near 
45 mm and a minimum near 10 mm. post-compensation, 
the absolute position error oscillates between 0.05 mm 

Table 3 Comparison of experimental results

Arithmetic

Average adaptation

PSO

5.39

WPSO

4.02

BPSO

4.58

PSO + ACO

3.12

Fig.3 Iterative curve of algorithm

Fig.5 X Y and Z axis errors after calibrating the robot

Fig.4 X Y and Z axis errors before calibrating robot

Fig.6 Absolute position error before robot calibration
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and 0.45 mm, with the minimum error approaching 0 mm 
and the maximum error around 0.45 mm. Consequently, 
the enhanced PSO algorithm significantly enhances the 
positioning accuracy of industrial robots. When 
considered alongside Table 3, it is evident that the 
stability of the PSO integrated with ACO algorithm is 
likewise ideal. One might require knowing the values for 
c1 and c2 , these values are based on empirical validation 
and optimization theory, the cognitive (c₁) and social (c₂) 
learning factors were established at 1.49 during the 
simulation verification procedure. This choice guarantees 
an optimal equilibrium between exploration (global 
search) and exploitation (local search), thereby enhancing 
the accuracy of the solution and averting premature 
convergence. In PSO-based optimization problems, 
particularly in robot calibration tasks, the values of c₁ and 
c ₂ within the range [1.4 - 1.6] are widely acknowledged. 
The proposed PSO-ACO hybrid optimization approach is 
enhanced in precision and stability by the setting of c₁ = c
₂ = 1.49, which maintains robustness and enhances the 
algorithm's ability to converge effectively.

5 Conclusion

This paper introduced an improved Particle Swarm 
Optimisation (PSO) method combined with Ant Colony 
Optimisation (ACO) for the calibration and error 
compensation of industrial robots. The improved method 
has shown notable advancements in convergence 
accuracy, optimization precision, and overall placement 
accuracy relative to conventional PSO and its derivatives, 
including Weighted PSO (WPSO) and hybrid PSO 
(BPSO). The method was evaluated using a population 
size of 200, with learning factors c 1and c 2 established at 
1.49, and inertia weights varying from wmax = 0.8 to wmin =
0.4. The mutation coefficient (pm) was 0.2, and the 
iterative process coefficient for the globally optimal 
solution was directly proportional to the current iteration 
number (P=i). The total number of iterations (T) was 200, 
with a step size of 2. The algorithm's efficacy was 
assessed throughout six iterations, with the suggested 
PSO+ACO attaining an average fitness value of 3.12, 
representing a notable enhancement relative to PSO 
(5.39), WPSO (4.02), and BPSO (4.58). Figures 4 and 5 
demonstrate that the errors along the X Y and Z axes 

prior to optimization varied between −100 mm and 150 
mm, with a maximum error of 150 mm. Following 
optimization, these errors were diminished to the interval 
[ − 1.25, 0.75 ] [−1.25, 0.75] mm, with a peak error of 
0.75 mm, signifying significant error compensation. 
Figures 6 and 7 illustrate that the absolute position 
inaccuracy of the robot diminished from a range of 10 
mm to 45 mm prior to compensation to 0.05 mm to 0.45 
mm subsequent to correction. The maximum absolute 
position error was reduced from 45 mm to 0.45 mm, 
reflecting a significant enhancement in the precision of 
positioning. Iterative trends, as shown in Figure 3, 
indicate that the improved PSO method and ACO 
optimize not only the placement of particles but also the 
iterative process of the population more effectively 
compared to traditional algorithms. ACO improves both 
the global and local functions of the search, hence 
enhancing the convergence speed and accuracy. It 
outperformed the common PSO variants in the three 
aspects of precision, stability, and convergence velocity. 
The decrease in the position error in the X, Y, and Z axes 
and the absolute position error shows its effectiveness in 
industrial robotic calibration tasks. These results have 
established premises for further research on the hybrid 
optimization methodology on robotic error compensation 
and other high-precision applications.

Future Recommendations and Directions

Several avenues for future research are 
recommended in light of the promising results of this 
study. Tests of the upgraded PSO + ACO will be tried 
with a wider class of industrial manipulators with 
different kinematics structures to confirm its general 
results. Furthermore, embedding automatic methods for 
adaptively determining the parameters will certainly play 
a fundamental role in allowing the algorithm to improve 
in operating contexts that can be varied. Improvements 
could include real-time optimization capabilities that 
would make immediate calibration possible during 
robotic operation. Hybridization with other metaheuristic 
algorithms, like GA or DE, may be carried out in the 
search for improved convergence velocity and precision. 
Finally, this methodology could be applied to multi-robot 
or swarm robot systems, which could offer new 
perspectives on the enhancement of collaborative 
activities in industrial automation. These potential 
directions would serve to improve the algorithm, 
increasing its applicability to complex robotic systems. 
The primary objective of this study is to compare the 
proposed hybrid PSO-ACO algorithm with PSO and its 
derivative approaches. However, future research will 
expand the analysis by incorporating additional parameter 
optimization techniques, including Genetic Algorithms 
(GA), Simulated Annealing (SA), and Grey Wolf 
Optimiser (GWO). The proposed method's robustness 
and efficacy in optimizing robotic system parameters for 
industrial applications will be more comprehensively 

Fig.7 Absolute position error after robot calibration
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evaluated through this broader benchmarking.
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