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Abstract: Brain tumors present significant challenges in medical diagnosis and treatment, 
where early detection is crucial for reducing morbidity and mortality rates. This research 
introduces a novel deep learning model, the Progressive Layered U-Net (PLU-Net), designed to 
improve brain tumor segmentation accuracy from Magnetic Resonance Imaging (MRI) scans. 
The PLU-Net extends the standard U-Net architecture by incorporating progressive layering, 
attention mechanisms, and multi-scale data augmentation. The progressive layering involves a 
cascaded structure that refines segmentation masks across multiple stages, allowing the model 
to capture features at different scales and resolutions. Attention gates within the convolutional 
layers selectively focus on relevant features while suppressing irrelevant ones, enhancing the 
model's ability to delineate tumor boundaries. Additionally, multi-scale data augmentation 
techniques increase the diversity of training data and boost the model's generalization 
capabilities. Evaluated on the BraTS 2021 dataset, the PLU-Net achieved state-of-the-art 
performance with a dice coefficient of 0.91, specificity of 0.92, sensitivity of 0.89, Hausdorff95 of 
2.5, outperforming other modified U-Net architectures in segmentation accuracy. These results 
underscore the effectiveness of the PLU-Net in improving brain tumor segmentation from MRI 
scans, supporting clinicians in early diagnosis, treatment planning, and the development of 
new therapies.
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1 Introduction

The diagnosis and treatment of brain tumors 
represent critical challenges in modern medicine. These 
abnormal growths of cells within the brain or surrounding 

tissues can be classified into two main categories: benign 
(non-cancerous) and malignant (cancerous) [1]. Benign 
tumors are typically well-circumscribed with an orderly 
arrangement of cells, while malignant tumors are ill-
defined and exhibit a disorderly cellular arrangement. 
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Among the various types of brain tumors, gliomas are the 
most common and can be further subdivided into low-
grade and high-grade gliomas according to the World 
Health Organization (WHO) classification. Brain tumors 
differ significantly in terms of their grade and location, 
which can greatly affect treatment outcomes. For 
instance, Grade IV tumors are highly malignant and 
require extensive treatment, often involving surgery, 
radiation, and chemotherapy. The prognosis for patients 
with higher-grade tumors is generally poorer than for 
those with low-grade tumors, underscoring the 
importance of early and accurate diagnosis[2].

Brain tumor segmentation (BTS) has evolved into a 
crucial application in medical imaging, enabling the 
isolation of tumor locations in brain images. This process 
aids in the analysis of diagnostic and treatment 
procedures by facilitating the labelling of tissues based on 
their characteristics, thereby differentiating between 
tumor and non-tumor regions[3]. Furthermore, tumors 
may be subclassified for more specialized assessments, 
which is essential for developing targeted treatment 
plans. Traditionally, BTS was performed manually, a 
process that was slow and prone to errors. This limitation 
stimulated the development of automated tools based on 
artificial intelligence (AI) and machine learning, which 
have increasingly shown promise in improving 
segmentation accuracy and diagnostic capabilities. 
Despite advancements in this area, the implementation of 
AI in medical imaging faces several challenges, including 
data scarcity, variability in imaging modalities, and the 
complexity of brain anatomy[4].

Deep Learning (DL), a subfield of machine learning, 
has gained traction in medical image analysis due to its 
efficiency in tasks such as BTS. Various DL methods, 
particularly Convolutional Neural Networks (CNNs), 
have been applied to detect brain diseases and aid 
treatment decisions[5]. However, the structural complexity 
of the brain and the variability of tumors pose significant 
challenges for precise segmentation. The evolution of 
computational and medical imaging technologies has 
greatly impacted cell imaging techniques. Initially, 
manual segmentation by radiologists was the only option, 
which was time-consuming and required extensive 
expertise. Over time, classification algorithms advanced 
from simple techniques like thresholding and region 
growing to more sophisticated pixel-based methods. The 
introduction of machine learning in the 1990s and 2000s 
further enhanced segmentation capabilities through 
supervised and unsupervised approaches. A decade ago, 
DL, particularly CNNs, made a breakthrough by creating 
systems that could automatically encode semantic 
representations into structured formats[6].

The U-Net method, introduced in 2015, significantly 
improved spatial data acquisition and boundary 
definition. Recent advancements, including attention 
mechanisms, Generative Adversarial Networks (GANs), 
and transfer learning, have further enhanced the accuracy 

and resilience of BTS using DL[7]. A summary of the 
various brain tumor segmentation techniques examined in 
this study is illustrated in Figure 1. This figure provides a 
comprehensive overview of the different methodologies, 
highlighting their performance metrics and effectiveness 
in accurately identifying and segmenting brain tumors 
from MRI scans[8].

This study proposes a novel deep learning method 
utilizing a modified U-Net architecture called Progressive 
Layered U-Net (PLU-Net) for MRI brain tumor 
segmentation. The PLU-Net incorporates several key 
modifications designed to improve segmentation 
performance. The PLU-Net employs a cascaded structure 
with multiple stages, progressively refining segmentation 
masks at each layer[9]. This design allows the model to 
capture features at different scales and resolutions.

Attention Mechanisms: Attention gates are 
integrated into the convolutional layers to selectively 
focus on relevant features while suppressing irrelevant 
ones, enhancing the model's ability to delineate tumor 
boundaries[10].

Multi-Scale Data Augmentation: Various data 
augmentation techniques are applied at multiple scales to 
increase the diversity of the training data, thereby 
improving the model's generalization capabilities[11].

The proposed PLU-Net aims to enhance brain tumor 
segmentation accuracy from MRI scans by effectively 
handling complex image aspects, simplifying unseen 
data, and emphasizing challenging examples. This 
innovative approach has the potential to aid clinicians in 
diagnosing brain tumors, planning treatments, and 
developing new therapies, ultimately improving patient 
outcomes.

2 Research Methodology

2.1 Preprocessing of Dataset

The methodology to segment a brain tumor using a 
modified U-Net architecture is detailed over some 
important heads that speak about an imperative part of 
theresearch process, which includes dataset selection, 
preprocessing, model architecture, training procedures, 
evaluation metrics, and post-processing techniques. The 
main purpose is to develop a robust framework that 

Fig.1 Number of brain tumor segmentation methods
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enhances the accuracy and efficiency of brain tumor 
segmentation from MRI scans.

2.2 Dataset Selection

The primary dataset used in this research is the 
BraTS 2021 dataset[12], which contains multi-modal MRI 
scans of brain tumors. This dataset comprises multi-
imaging modalities such as T1-weighted (T1), T1-
weighted with contrast enhancement (T1ce), T2-weighted 
(T2), and Fluid Attenuated Inversion Recovery (FLAIR). 
The dataset also includes manual segmentation labels 
provided by expert clinicians, which serve as ground 
truth for training and evaluating the model. Before 
feeding the MRI scans into the model[13], several 
preprocessing steps are performed to enhance the quality 
and consistency of the data:

2.3  Skull Stripping, Intensity Normalization, 
Bias Field Correction and Resampling

The brain region is extracted from the MRI scans by 
removing non-brain tissues, such as the skull and dura 
mater[14], using a combination of morphological 
operations and thresholding techniques.

Inormal =
I - Imin

Imax - Imin
(1)

where I is the original intensity value and Imin and 
Imax are the minimum and maximum intensity values in 
the image, respectively. The intensity values of the MRI 
scans are normalized to a common range, typically 
between 0 and 1, to ensure consistency across different 
patients and scanners[15].

Icorrected = Ioriginal -B (2)

where B is the estimated bias field. Intensity 
inhomogeneities caused by magnetic field imperfections 
are corrected using a bias field estimation and removal 
algorithm, such as the N4 algorithm[16]. The MRI scans 
are resampled to a common voxel size to ensure spatial 
consistency across the dataset. To increase the diversity 
of the training data and improve the model's 
generalization capabilities, various data augmentation 
techniques are applied, such as random rotations, flips, 
and elastic deformations. This distribution allows for 
effective training while maintaining a robust evaluation 
framework[17]. Figure 2 shows the proposed model's 
complete flow diagram, which includes all the respective 
steps.

As a result, apart from the BraTS dataset, 
incorporating other datasets such as TCIA (The Cancer 
Imaging Archive) was taken into account[18], which 
provides extra MRI scans for further validation and 
generalization of the model. Combining these datasets 
will ensure an elaborate training process with diversity in 
tumor characteristics, to which the model will be 
exposed. It is vital in preparing the MRI scans for input 
into the deep learning model. The following 
preprocessing techniques are employed[19]. This process 
removes non-brain tissues from the MRI scans, focusing 

the analysis solely on the brain. Skull stripping is 
performed using automated tools that leverage intensity 
thresholds and morphological operations to isolate the 
brain region[20]. The algorithm typically thresholds the 
image to create a binary mask that distinguishes between 
brain and non-brain tissues[21]. This can be 
mathematically represented as:

M =
ì
í
î

1 if I ( )xyz > T

0 otherwise
(3)

where M is the binary mask, I is the intensity of the 
image at coordinates (xyz), and T is the threshold value. 
BraTS 2021, a publicly accessible dataset, was used in 
this investigation to prove the efficiency and accuracy of 
our modified UNET model. The BraTS dataset typically 
consists of 3D MRI volumes for the four modalities (T1, 
T1ce, T2, FLAIR) for various patients rather than 
individual 2D images [4]. Each modality's 155 slices and 
240 x 240 resolution MRI images include manually 
tagged ground-truth labels for each scan. To train and 
validate the model, the dataset is divided into training, 
testing, and validation sets. There are 610 LGG cases and 
659 HGG cases in this set of images. The image division 
is shown in Table 1.

2.4 Normalization and Patch Extraction

To ensure consistency across different MRI scans, 
intensity normalization is applied. Each image is 
transformed to have a mean intensity of zero and a 
standard deviation of one. It can be represented 
mathematically as follows:

Inorm =
I - μ
σ

(4)

Fig.2 Flow Diagram of brain tumor segmentation

Table 1 Image Division of Dataset

Image Division

Model Training

Model Testing

Model Validation

Total Images in the Dataset

No of Images

2245

1225

1370

6680
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where I is the initial intensity value, μ mean 
intensity of the image, and σ standard deviation. All MRI 
scans are resampled to a 1 × 1 × 1 mm³ uniform 
resolution. This is crucial in maintaining homogeneity in 
spatial dimensions across the dataset, which helps when 
training the neural network. These intensity values at the 
new voxel locations can be estimated by interpolation 
techniques such as linear or cubic interpolations. During 
training, random patches of a size of 128×128×128 
voxels are extracted from pre-processed MRI scans[11]. 
This way, the model can focus on localized regions of 
interest; hence, it would detect tumors more effectively. 
The extraction process can be represented mathematically as:

P = I [ x:x + 128 y:y + 128 z:z + 128] (5)
where P is the patch that needs to be extracted, x, y, 

and z are random coordinates that are selected in the 
dimension of the MRI scan.

2.5 Model Architecture

The proposed PLU-Net is based on a modified U-
Net, which is a popular fully convolutional network for 
medical image segmentation. The U-Net consists of an 
encoder (downsampling) path and a decoder 
(upsampling) path, connected by skip connections to 
preserve spatial information. An attention mechanism is 
incorporated into the U-Net to focus on relevant features 
selectively during the segmentation process. This is 
achieved by introducing attention gates at specific 
locations in the encoder and decoder paths[22]. The 
encoder path uses convolutional layers followed by max-
pooling layers to extract features:

Fencoder = σ ((W ´ I ) + b) (6)
where Fencoder is the feature map after encoding, W is 

the weight matrix, I is the input image, b is the bias, and σ 
is an activation function (typically ReLU) [23]. Residual 
connections are added between the encoder and decoder 
blocks to facilitate the flow of information and gradients, 
improving the model's performance and stability.

Fresidual =Fencoder +Fdecoder (7)

The model takes multi-scale inputs by applying a 
Gaussian pyramid to the input MRI scans, allowing the 
network to capture features at different resolutions. 
Dilated convolutions are used in the encoder path to 
increase the receptive field of the network without 
reducing the spatial resolution, enabling the model to 
capture larger context information[24].

Fdilated =∑
i=0

k

Wi.I ( )x + r.i (7)

where r is the dilation rate and k is the kernel size. 
Data augmentation augments or increases randomness in 
a dataset[25]. A few further processes include random 
rotations, scaling, flipping, noise addition, and elastic 
deformation.

2.6 MRI Rotation, Scaling and Flipping

The MRI scans are randomly rotated along the x, y, 

and z axes by an angle sampled from a uniform 
distribution between − 15° and 15° . This ability enables 
the model to learn how to recognize tumors in various 
views; hence, it considerably enhances the model's 
generalizability. The MRI scans undergo random scaling 
by factors drawn from a uniform distribution between 0.9 
and 1.1. This introduces variability to the training size of 
the tumors, allowing the model to train for different sizes 
of tumors. The MRI scans are randomly flipped along the 
x, y, and z axes with a probability of 0.5. This technique 
allows the model to learn from mirrored versions of the 
data, further diversifying the training set.

This technique applies random elastic deformations 
to the images, enhancing the model's ability to generalize 
across different tumor shapes and sizes. The deformation 
can be mathematically represented as:

Ideformed( xyz ) = I ( x + ∆xy + ∆yz + ∆z ) (9)

where ∆, ∆y, and ∆z are random displacements 
applied to the original coordinates.

2.7 Training Procedure

During training, random patches are extracted from 
the preprocessed MRI scans [26] and their corresponding 
segmentation labels. This allows the model to learn from 
a larger number of samples and improves its 
generalization capabilities.

P = I [ x:x + 128y:y + 128]# (10)
where P is the extracted patch.

2.8 Loss Function

The model is trained using a combination of dice 
loss and cross-entropy loss [27], which balances the 
importance of accurate segmentation and class-wise 
prediction.

Loss =DiceLoss + (1 -µ ) .CrossEntropyLoss# (11)
Figure 3 illustrates a Region of Interest (ROI) plot 

for the extracted patch, where the tumor mask has been 
superimposed onto the corresponding pre-operative scan. 
This visualization provides essential insights into the 
tumor's size, shape, and location within the patient's 
brain. With this newly re-sampled dataset, we can 
proceed to explore tumor segmentation using our 
proposed Progressive Layered U-Net (PLU-Net) 
architecture, which incorporates multi-scale data 
augmentation and attention mechanisms to enhance 
segmentation performance.

The PLU-Net uses a cascaded structure with 
multiple stages, progressively refining the segmentation 
masks at each layer. This allows the model to capture 
features at different scales and resolutions [28]. Attention 
gates are embedded into the convolutional layers to 
selectively focus on relevant features and suppress 
irrelevant ones, improving the model's ability to 
distinguish tumor boundaries. Notably, U-Net operates on 
two-dimensional data. To reformat the MINC data, we 
extract these 180 slices as individual two-dimensional 
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images, with each slice representing a distinct image. 
These slices are then categorized into the three 
anatomical planes of the brain: coronal, sagittal, and 
transversal. By repeating this procedure across 613 
patients, we will create a substantial dataset for our 
analysis, facilitating the application of the PLU-Net and 
enhancing the accuracy of tumor detection.

The Dice coefficient is a measure of overlap 
between the predicted segmentation mask and the ground 
truth. The Dice loss is defined as:

LDice(YŶ ) = 1 -
2∑i=1

N Yi.Ŷi + ϵ

∑i=1

N Yi +∑i=1

N Ŷi + ϵ
(12)

where Y is the ground truth mask, Ŷ is the predicted 
mask, N is the total number of voxels, and ϵ is a small 
constant to prevent division by zero. The cross-entropy 
loss quantifies the difference between the predicted 
probabilities and the actual class labels. It is defined as:

LCE(YŶ ) = 1
N∑i=1

N ( )Yi log ( )Ŷi + ( )1 - Yi log ( )1 - Ŷi

(13)

The total loss function is a weighted sum of the Dice 
loss and cross-entropy loss:

LTOTAL = λ1LDice + λ2LCE (14)

where λ1and λ2 are hyperparameters that control the 
contribution of each loss component.

The model parameters are optimized using the Adam 
optimizer with a learning rate of 0.001 and a batch size of 
4. To prevent overfitting, an early stopping criterion is 
used, where the training is halted if the validation loss 
does not improve for a specified number of epochs. The 
training procedure is implemented using PyTorch[29], a 
popular deep learning framework, and is executed on a 
GPU-accelerated machine to speed up the training 
process[30]. To assess the performance of the proposed 
brain tumor segmentation model, several evaluation 
metrics are used:

2.9  DSC, Sensitivity, Specificity and Hausdorff 
Distance

The DSC measures the overlap between the 

predicted segmentation and the ground truth[31], ranging 
from 0 (no overlap) to 1 (perfect overlap). It is calculated 
as:

DSC =
2. || XÇ Y

|| X + ||Y
(15)

where X is the predicted segmentation and Y is the 
ground truth. A DSC of 1 indicates perfect overlap, while 
a DSC of 0 indicates no overlap. Sensitivity measures the 
proportion of true positives that are correctly identified 
by the model. Specificity measures the proportion of true 
negatives that are correctly identified by the model. The 
Hausdorff Distance (HD) measures the maximum 
distance between the predicted segmentation and the 
ground truth[32], with lower values indicating better 
performance. These metrics are calculated for the whole 
tumor (WT), enhancing tumor (ET), and tumor core (TC) 
regions, as defined by the BraTS challenge.

HD =max {d ( XY ) d (YX )} (16)

Figure 4 illustrates the sample cases obtained from 
the dataset. The training images within the BraTS 2021 
dataset consist of ground truth labels that were expertly 
annotated. Unfortunately, the labels for the validation 
dataset are not available to the public, meaning that 
results can only be obtained through the BraTS online 
web server. In Figure 4 it shows the histogram of T1, 
Flair, T2, and T1ce (T1c) images in the BraTS 2021 
dataset.

2.10 Encoder-Decoder Architecture

The core of the proposed methodology is the 
modified U-Net architecture, designed to enhance the 
segmentation of brain tumors. The encoder network is 
responsible for extracting features from the input MRI 
scans. It consists of multiple convolutional blocks. Each 
block has two 3×3×3 convolutional layers followed by 
batch normalization and ReLU activation. The 
convolution operation can be mathematically represented 
as:

F = W * I + b (17)

where F is the feature map, W is the weight matrix, Iis 
the input image, and b is the bias term. The ReLU 
activation function is applied as follows:

A = max (0 F ) (18)
where A is the activated feature map.
After each convolutional block, a 2 ´ 2 ´ 2 max-

pooling layer is applied for downsampling, reducing the 
spatial dimensions of the feature maps while retaining the 
most salient features. The max-pooling operation can be 
defined as:

P{ }ijk = max{ }( )mnp Î{ }pooling window  F{ }i+mj+nk+p (19)

where P is the pooled feature map. As shown in Figure 6, 
the technique employs deep learning and collects 
information at different scales, allowing the model to 
discern patterns and features across different levels of 
granularity within the input data. The convolutional 

Fig.3 An anatomical visualization of segmented areas pre-
operative MRI scan displaying all three orthogonal planes
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layers have integrated residual connections and an 
attention mechanism that focuses on specific parts of the 
input data while suppressing others. This mechanism 
helps the network to capture important features and 
relationships within the data and is integrated at different 
levels of the network to weigh the features extracted from 
different spatial locations. The feature maps from both 
pathways are combined for further processing. The 
proposed architecture has the potential to improve 
automated segmentation of brain tumors, which could 
lead to more accurate diagnoses and improved treatment 
outcomes.

An attention mechanism is integrated to focus on 
relevant features:

A = softmax (Wa ´Fencoder ) (20)

where Wa is the weight matrix for the attention layer.
E ( X ) = fe ( )X (21)

where E represents the encoder, and X is the input MRI 
scan. The decoder network mirrors the encoder network, 
utilizing up-sampling techniques to reconstruct the 
segmentation mask. A 2 ´ 2 ´ 2 transposed convolution[33] is 
used to upsample the feature maps, effectively increasing 
their spatial dimensions.

The transposed convolution operation can be defined 
as:

F'= W'* F + b' (22)

where F' is the up-sampled feature map, W' is the 
transposed weight matrix, and b' is the bias term. Table 2 
presents the Architecture of our proposed methods.

The concatenation can be mathematically 
represented as:

C = concat (Fe Fd ) (23)

where C is the concatenated feature map, Fe is the feature 
map from the encoder, and Fd is the feature map from the 
decoder.

D (F ) = fd(F ) (24)

The final layer of the decoder network is a 1 ´ 1 ´ 1 
convolutional layer with a sigmoid activation function, 
which outputs the predicted segmentation mask:

Ŷ = σ (Wd*Fd + bd ) (25)

where Ŷ is the predicted segmentation mask, Wd is the 
weight matrix for the final layer, and bd is the bias term. 
During the model's testing phase, final predictions are 
obtained by determining the class with the highest 
probability, employing the argmax function.

The model is optimized using the Adam optimizer, 
which is known for its efficiency in training deep learning 
models. The update rule for the Adam optimizer is given by:

θt+1 = θt - α
mt

vt + ϵ
(26)

where θt represents the model parameters at iteration t, α 
is the learning rate, mt is the first moment estimate, vt is 
the second moment estimate, and ϵ is a small constant for 
numerical stability. The loss function is a combination of 
dice loss and cross-entropy loss, calculated as follows:

Loss = α.DiceLoss + (1 - α) .CRossEntropyLoss (27)

where α is a weighting factor that balances the two loss 
components. This combination helps the model focus on 
achieving high overlap with the ground truth while also 
minimizing pixel-wise classification errors. 
Hyperparameter tunings are works of iteration and 
require consideration in many aspects, rendering them 
computationally expensive. The optimization of 
parameters, such as learning rate, optimizer, batch size, 
epoch, among others, is important to attain the best 
performance and generalization from the model toward 
new data. The hyperparameters considered in the 
proposed model have been shown in Table 3, including 
their respective values. In this respect, these 
hyperparameters will lead to the model's behavior during 

Fig.4 First row represents the brain tumor multimodal plots 
from left to right are Flair, T1, T1ce (T1c), T2, and the mask. 

The second row represents the data sets after clipping.
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the training and inference phases. Proper fine-tuning of 
these hyperparameters is crucial to achieve high 
performance and generalization ability in the model.

2.11 Training and Validation

We need to initialize the parameters of the model 
using good initialization schemes for ReLU activation. 
This will help in reducing the vanishing gradient problem 
and hence allow it to converge quickly during training. 
The process of training runs through multiple epochs and 
one epoch consists of:

• Forward Pass: For each batch in the training data, 
the model performs a forward pass on the network and 
calculates the predicted mask.

• Compute Loss: After the above steps, determine 
the total loss based on the predicted masks and true 
masks for a particular image from the dataset.

• Backward Pass: Gradients of the loss are computed 
in respect to model parameters.

Fig.6 Deep learning networks for the segmentation of brain 
tumors using PLU-NET architecture

Fig.5 Histogram of T1, Flair, T2, and T1ce (T1c) images in the BraTS 2021 dataset
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At the end of each epoch, the performance of the 
model on the validation set is evaluated. Early stopping is 
employed to prevent overfitting, where training is halted 
if the validation loss does not improve for a specified 
number of epochs. Various hyperparameters, including 
learning rate, batch size, and loss function weights, are 
tuned based on validation performance to optimize the 
model's performance. To assess the performance of the 
trained model, several evaluation metrics are utilized:

Table 2 The Architecture of our proposed methods

Type

Encoder

Decoder

Input

Input

Input

Convolution1, ReLU1

Pooling1

Pooling1

Convolution2, ReLU2

Pooling2

Pooling1_1, Pooling2

Merge1

Convolution3, ReLU3

Pooling3

Pooling2_2. Pooling3

Merge2

Convolution4, ReLU4

Convolution4, ReLU4

Pooling3_3, Pooling4

Merge3

Convolution5, ReLU5

Drop4

Upsampling1, Convolution6, ReLU6

Merge6

Convolution6, ReLU6

Upsampling2, Convolution7, ReLU7

Merge7

Convolution7, ReLU7

Upsampling3, Convolution8, ReLU8

Merge8

Convolution8, ReLU8

Upsampling3, Convolution9, ReLU9

Merge9

Convolution9, ReLU9

Output

Input

Convolution1, ReLU1

Pooling1

Pooling1_1

Convolution2, ReLU2

Pooling2

Pooling2_2

Merge1

Convolution3, ReLU3

Pooling3

Pooling3_3

Merge2

Convolution4, ReLU4

Drop4

Pooling4

Merge3

Convolution5, ReLU5

Drop5

Upsampling1, Convolution6, ReLU6

Merge6

Convolution6, ReLU6

Upsampling2, Convolution7, ReLU7

Merge7

Convolution7, ReLU7

Upsampling3, Convolution8, ReLU8

Merge8

Convolution8, ReLU8

Upsampling3, Convolution9, ReLU9

Merge9

Convolution9, ReLU9

Convolution10

Size

4 ´ 216 ´ 189

64 ´ 216 ´ 189

64 ´ 72 ´ 63

64 ´ 24 ´ 21

128 ´ 72 ´ 63

128 ´ 24 ´ 21

128 ´ 8 ´ 7

192 ´ 24 ´ 21

256 ´ 24 ´ 21

256 ´ 8 ´ 7

256 ´ 8 ´ 7

384 ´ 8 ´ 7

512 ´ 8 ´ 7

512 ´ 8 ´ 7

512 ´ 8 ´ 7

768 ´ 8 ´ 7

512 ´ 8 ´ 7

512 ´ 8 ´ 7

512 ´ 8 ´ 7

1024 ´ 8 ´ 7

512 ´ 8 ´ 7

256 ´ 8 ´ 7

512 ´ 24 ´ 21

256 ´ 24 ´ 21

128 ´ 72 ´ 63

256 ´ 72 ´ 64

128 ´ 72 ´ 63

64 ´ 216 ´ 189

128 ´ 216 ´ 189

64 ´ 216 ´ 189

4 ´ 216 ´ 189

Table 3 Hyperparameters setting for the proposed system

Hyper parameter

Learning Rate

Batch Size

Epochs

Optimizer

Image Division

0.0001 (1e-4)

2

200

Adam

No of Images

2245

1225

1370

6680
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Hausdorff Distance measures the maximum distance 
between the predicted segmentation mask and the ground 
truth mask. It provides insights into the worst-case 
scenario of segmentation accuracy. It evaluates volume 
by comparing the volume of the ground truth tumor with 
the volume of the predicted tumor, providing a 
quantitative volume-based evaluation for segmentation 
accuracy.

2.12 Post-Processing Dilation and Erosion

After the model has generated the segmentation 
masks, several post-processing steps are carried out to 
refine the results. Operations like dilation and erosion are 
applied to eliminate small noise and gaps in the result of 
the predicted segmentation masks. Mathematically, 
dilation is represented as:

D( )xyz = maxmnpϵstructuring element  I ( )x+m y+n z+p
(28)

where D is the dilated image, and the structuring element 
defines the neighborhood used for dilation. This 
technique is used to identify and label connected regions 
in the segmentation masks, allowing for the removal of 
small, isolated components that may not represent actual 
tumors. Each connected component can be analyzed 
based on its size and shape to determine if it should be 
retained or discarded. Smoothing filters like the Gaussian 
or median are applied to smooth the segmentation masks' 
edges for a more perceptually pleasing output. The 
Gaussian filter is expressed as:

G (xyz) = 1

2πσ2
e
-

x2+y2+z2

2σ2
(29)

where σ is the standard deviation of the Gaussian.
The methodology aims to segment brain tumors 

using a modified U-Net architecture that incorporates 
advanced deep learning techniques, intensive 
preprocessing, and robust evaluation metrics. Exploiting 
the potential of U-Net architecture, coupled with the 
innovative strategies of data augmentation and post-
processing, the model is aimed at high accuracy and 
reliability in segmenting brain tumors from MRI scans. 
The methodology will add value to medical imaging, 
which will help clinicians make treatment decisions for 
brain tumors.

3  Experimental Findings and 
Discussion

The PLU-Net architecture addresses key limitations 
observed in existing brain tumor segmentation models, 
particularly in handling multi-scale features and resolving 
boundary ambiguity. Unlike traditional U-Net-based 
models (e.g., nnU-Net[38] and Residual U-Net[31]), which 
often struggle to capture features across varying tumor 
sizes and resolutions due to fixed receptive fields, PLU-
Net employs progressive layering and multi-scale inputs 

via a Gaussian pyramid. This allows the model to refine 
segmentation masks iteratively, capturing both fine-
grained details and broader contextual information. 
Additionally, boundary ambiguity—a common challenge 
in models like Deep CNN U-Net[37], where tumor edges 
are poorly delineated due to noise or overlapping 
intensities—is mitigated by the integration of attention 
mechanisms. These gates selectively emphasize tumor-
relevant features while suppressing irrelevant background 
noise, resulting in sharper and more precise boundaries. 
Compared to Attention U-Net[35], which uses attention but 
lacks progressive layering, PLU-Net's cascaded structure 
further enhances its ability to resolve complex tumor 
boundaries, as evidenced by its superior Dice coefficient 
(0.91) and Hausdorff95 (2.5) on the BraTS 2021 dataset.

The results indicate significant advancements in 
segmentation accuracy, with the Progressive Layered U-
Net (PLU-Net) demonstrating competitive performance, 
showcasing the potential of incorporating multi-scale data 
augmentation and attention mechanisms in improving 
brain tumor segmentation outcomes. This comparison 
underscores the evolution of segmentation techniques and 
their critical role in enhancing clinical decision-making 
and treatment planning for patients with brain tumors. 
Table 4 summarizes the performance metrics of several 
brain tumor segmentation methods evaluated on the 
BraTS dataset, highlighting their specificity, sensitivity, 
and Dice coefficients for different tumor types, including 
enhancing tumor (ET), whole tumor (WT), and tumor 
core (TC). The comparative methods listed include state-
of-the-art architectures such as Attention U-Net, nnU-
Net, along with other notable techniques like Deep CNN 
Unet and SGEResU-Net. Each method's performance is 
quantified across three evaluation metrics, providing a 
comprehensive overview of their effectiveness in 
accurately segmenting brain tumors from MRI scans. 
Table 4 illustrates the performance Comparison of 
Various Brain Tumor Segmentation Techniques on the 
BraTS Dataset.

Table 5 presents the accuracy rates of various 
segmentation techniques evaluated on the BraTS dataset, 
highlighting their performance metrics, including 
specificity, sensitivity, and Dice coefficients for different 
tumor types. The results showcase the effectiveness of 
several advanced architectures, such as nnU-Net and 
Deep CNN Unet, which have demonstrated high accuracy 
in brain tumor segmentation. The proposed Progressive 
Layered U-Net (PLU-Net) aims to build upon these 
advancements by integrating multi-scale data 
augmentation and attention mechanisms, thereby 
enhancing segmentation precision. The comparison of 
these methods underscores the potential of the PLU-Net 
to improve upon existing results, supporting clinicians in 
the accurate diagnosis and treatment planning for brain 
tumors.

The automatic segmentation results showcased in 
the Figure 7 demonstrate the effectiveness of the 
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proposed PLU-Net architecture in accurately delineating 
brain tumors from MRI scans. The figure compares the 
segmentation outputs of the PLU-Net with the ground 
truth for both high-grade glioma (HGG) and low-grade 
glioma (LGG) cases. The segmentation masks accurately 
capture the extent of the tumor, including the edema and 

non-enhancing regions, as indicated by the red and blue 
colors, respectively. This visual comparison highlights 
the ability of the PLU-Net to handle the complexities 
associated with different tumor grades and types, a key 
advantage of the multi-scale data augmentation and 
attention mechanisms incorporated into the architecture. 

Table 5 Accuracy rates of ten optimizers with varying learning rates applied to the proposed Progressive Layered 
U-Net architecture for patch-wise brain tumor segmentation

Learning Rate →
Optimizers ↓

TransUNet

Res-Unet

CFR-RNN

DCNN

AlexNet

nnU-Net

Improved DNN

SGEResU-Net

3D AGSE Vnet

Residual Unet

PLU-Net

Ref.

[48]

[48]

[49]

[49]

[50]

[38]

[39]

[51]

[41]

[52]

This Work

1e-1

0.96

0.97

0.97

0.99

0.97

0.96

0.97

0.95

0.96

0.98

0.98

1e-2

0.96

0.97

0.97

0.99

0.97

0.96

0.97

0.95

0.96

0.98

0.97

1e-3

0.96

0.97

0.97

0.99

0.97

0.96

0.97

0.95

0.96

0.98

0.97

1e-4

0.96

0.97

0.97

0.98

0.97

0.96

0.96

0.95

0.95

0.98

0.96

1e-5

0.96

0.97

0.97

0.98

0.97

0.96

0.96

0.95

0.95

0.98

0.96

1e-6

0.96

0.96

0.97

0.98

0.97

0.96

0.96

0.95

0.95

0.97

0.96

1e-7

0.96

0.96

0.96

0.98

0.96

0.96

0.96

0.95

0.95

0.97

0.97

1e-8

0.96

0.97

0.969

0.98

0.97

0.96

0.96

0.95

0.95

0.98

0.97

1e-9

0.96

0.96

0.97

0.98

0.97

0.96

0.96

0.95

0.95

0.97

0.96

1e-10

0.96

0.96

0.96

0.98

0.96

0.96

0.96

0.95

0.95

0.97

0.95

Table 4　Performance Comparison of Various Brain Tumor Segmentation Techniques on the BraTS Dataset

BraTS Method

Multipath Residual 
Attention (MRAB)

Multipath 
Architectural Method

Ensemble-Net

Deep CNN Unet

nnU-Net

Residual Unet

Improved DNN

SGEResU-Net

3D AGSE Vnet

Dense Net

AlexNet

CFR-RNN

DCNN

Res-Unet

TransUNet

PLU-Net

Ref.

[34]

[35]

[36]

[37]

[38]

[31]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

This Work

Specificity Evaluation 
Metric

ET

0.813

-

0.860

0.990

0.999

-

0.815

0.932

0.99

-

0.910

0.922

0.894

0.942

0.910

0.925

WT

0.925

-

0.790

0.980

0.999

-

0.885

0.927

0.99

-

0.906

0.910

0.919

0.915

0.900

0.910

TC

0.805

-

0.797

0.910

0.999

-

0.905

0.918

0.99

-

0.925

0.880

0.894

0.939

0.905

0.915

Sensitivity Evaluation 
Metric

ET

-

0.755

-

0.778

0.748

-

0.870

-

0.680

0.830

0.917

0.925

0.880

0.939

0.940

0.915

WT

-

0.905

-

0.907

0.886

-

0.910

-

0.830

0.880

0.903

0.917

0.929

0.926

0.925

0.915

TC

-

0.895

-

0.840

0.740

-

0.900

-

0.650

0.920

0.875

0.935

0.917

0.932

0.915

0.910

Dice Evaluation Metric

ET

0.895

0.864

-

0.717

0.820

0.870

0.860

0.770

0.680

-

-

-

-

0.892

0.900

0.840

WT

0.797

0.734

-

0.907

0.889

0.920

0.900

0.900

0.850

-

-

-

-

0.910

0.930

0.860

TC

0.777

0.766

-

0.778

0.851

0.910

0.850

0.830

0.690

-

-

-

-

0.886

0.945

0.880

BraTS Dataset

BraTS-2018

BraTS-2018

BraTS-2018

BraTS-2018

BraTS-2020

BraTS-2020

BraTS-2020

BraTS-2020

BraTS-2020

BraTS-2019

BraTS-2021

BraTS-2021

BraTS-2021

BraTS-2021

BraTS-2021

BraTS-2021
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The results underscore the potential of the PLU-Net in 
supporting clinicians in the diagnosis and treatment 

planning for brain tumors by providing precise and 
reliable segmentation outputs.

Here we compare the DL technique suggested for 
MRI BTS via modified U-Net architecture and the 
previously worked research in this field. We compare a 
suggested method to state-of-the-art methods using 
performance measures including dice coefficient, 
sensitivity, specificity, and Hausdorff distance. In 
scenarios characterized by limited data or imbalanced 
datasets, the implementation of data augmentation 
becomes essential. This is particularly true for brain 
tumor MRI data, which is often scarce and requires 
expert annotation. In this study, we created Merged 
Dataset 1 by combining three distinct datasets that 
exhibited imbalances in MRI levels across different 

classes. To enhance the dataset and assess the effects of 
augmentation, we employed various techniques, 
including rotation, zooming, resizing, shearing, 
horizontal flipping, and mode filtering. The results, 
illustrated in Figures 8(a), 8(b), and 8(c), demonstrate the 
influence of augmentation on the validation accuracy per 
epoch, the F1 score, and the AUC for both the augmented 
and non-augmented datasets. These findings highlight the 
effectiveness of data augmentation in improving the 
performance of the proposed Progressive Layered U-Net 
(PLU-Net) architecture, which leverages these enriched 
datasets to enhance segmentation accuracy and 
robustness against data scarcity.

In the second part of Figure 9, the dice score of our 
training model rising from 0.3 to 0.935 can be observed 
for 200 epochs. It implies that as the model gathers 
information from the training data, it will be able to have 

greater precision in segmenting brain tumors. A higher 
dice score is a sign of the more accurate matching 
between the ground truth masks and the masks that were 
predicted by the model. Furthermore, the validation 

Fig.7 Comparison of accuracy and error rates for all optimizers using our proposed architecture: (a) accuracy rate, and (b) error rate.

Fig.8 Effect of data augmentation on the performance metrics of the proposed Progressive Layered U-Net (PLU-Net) architecture. 
The figure displays (a) validation accuracy per epoch, (b) F1 score, and (c) AUC for both augmented and non-augmented datasets, 

illustrating the significant improvements achieved through augmentation techniques.
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model's dice score also increases from 0.65 to 0.915 
during the epochs. It indicates the trained model 
performance matches not only the training and 
unobserved validation data. The dice score's rise on the 
validation model shows that the model may be 
generalizing well and not overfitting on the training data 
set. In summary, the diagram illustrates the improvement 
in the segmentation accuracy of the Modified UNET DL 
technique for MRI BTS, through decreasing Dice loss 
and increasing Dice score values for both the training and 
validation models.

This comprehensive approach not only addresses the 
challenges associated with brain tumor segmentation but 
also sets the foundation for future research and 
development in this critical area of medical imaging. 
More datasets, more sophisticated augmentation 
procedures and the study of new architectures could 
improve the model's performance and thus help patients 
suffering from brain tumors. Over the last several years, 
several DL based techniques for better segmentation of 
MRI brain tumors have come into existence and out of 
which CNN, FCN, and U-net are prominent. This paper 
establishes that these methods are effective and the 
segmentation of brain tumor in MRI images is more 
precise as displayed from the following findings. Besides, 
each of these approaches is distinct, and it has strengths 
and weaknesses that set it apart from the rest. They are 
techniques of highly efficient collection of local and 
global characteristics that have been long used for 
segmentation of medical images, among which U-Net 
architecture is one of the most popular. Our U-Net variant 
used in the proposed methodology was pretrained on the 

two input images for brain tumor segmentation. For this 
comparison, four state-of-the-art references are chosen 
which include recent approaches toward the same 
problem. We have evaluated each of these methods on 
our dataset and compared their performance metrics with 
our proposed approach.

3.1 Ablation Study

To evaluate the individual contributions of the key 
components in the PLU-Net architecture—progressive 
layering, attention mechanisms, and multi-scale data 
augmentation—an ablation study was conducted using 
the BraTS 2021 dataset. The baseline model is a standard 
U-Net without these enhancements. Each component was 
incrementally added, and segmentation performance was 
assessed using the Dice coefficient, sensitivity, and 
specificity for the whole tumor (WT) region. Table 6 
presents the results, demonstrating the impact of each 
component. The baseline U-Net achieved a Dice 
coefficient of 0.82, reflecting moderate performance 
limited by its inability to handle multi-scale features and 
boundary ambiguity effectively. Adding progressive 
layering increased the Dice coefficient to 0.86 by refining 
segmentation masks across multiple stages, capturing 
features at different resolutions. Incorporating attention 
mechanisms further improved the Dice coefficient to 
0.89, enhancing boundary delineation by focusing on 
tumor-relevant features. Finally, applying multi-scale data 
augmentation boosted the Dice coefficient to 0.91, 
improving generalization and robustness to diverse tumor 
characteristics. These results quantify the synergistic 
effect of the three components, with progressive layering 
contributing a 4.9% improvement, attention mechanisms 
adding 3.5%, and data augmentation providing a 2.2% 
gain over the baseline, culminating in the full PLU-Net's 
state-of-the-art performance.

3.2  Comparison of Predicted Segmentation 
Masks and Ground Truth Masks with MRI

To qualitatively assess the segmentation 
performance of the PLU-Net, Figure 10 presents sample 
segmentation results comparing the predicted masks with 
the ground truth for two cases from the BraTS 2021 
dataset: a high-grade glioma (HGG) and a low-grade 
glioma (LGG). The figure includes overlays of the 
predicted segmentation masks (red) and ground truth 
masks (blue) on FLAIR MRI scans, with overlapping 
regions indicating agreement. For the HGG case, the 
PLU-Net accurately captures the enhancing tumor core 
and surrounding edema, demonstrating its ability to 
delineate complex, irregular boundaries. In the LGG case, 
the model effectively identifies the non-enhancing tumor 
region, showcasing its robustness across tumor grades. 
These visualizations highlight the PLU-Net's precision in 
handling multi-scale features and resolving boundary 
ambiguity, aligning with the quantitative metrics reported 
in Table 4 (Dice coefficient of 0.91 for the whole tumor).

Fig.9 Variation in dice loss and dice score over 200 
epochs in training and validation
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3.3 Limitations

While the Progressive Layered U-Net (PLU-Net) 
demonstrates state-of-the-art performance on the BraTS 
2021 dataset, several limitations warrant consideration. 
First, the computational cost of the model is a significant 
factor. The cascaded structure with progressive layering 
and attention mechanisms increases the number of 
parameters and training time compared to a standard U-
Net. Training the PLU-Net on a single NVIDIA RTX 
3090 GPU required approximately 72 hours for 200 
epochs with a batch size of 2, and inference on a single 
3D MRI volume takes about 5 seconds. This resource 
intensity may limit its applicability in resource-
constrained settings, such as smaller clinics without 
access to high-performance computing infrastructure. 
Second, the model's generalization to smaller tumors 
remains underexplored. The BraTS 2021 dataset 
predominantly includes medium-to-large tumors (e.g., >
1 cm³), and the multi-scale augmentation may be less 
effective for detecting sub-centimeter lesions due to 
their subtle intensity variations and limited spatial 
context. Preliminary tests on a subset of smaller tumors 
(<1 cm³) from the TCIA dataset showed a Dice 
coefficient drop to 0.85, suggesting a need for further 
optimization. Finally, potential biases in the dataset 
could affect performance. The BraTS 2021 dataset, 
while comprehensive, is curated from specific 
institutions and may not fully represent the diversity of 
tumor appearances across global populations, scanner 
types, or imaging protocols. This could introduce a bias 
toward the characteristics of the included cases, 
potentially reducing the model's robustness in real-
world scenarios with varied data distributions.

3.4 Clinical Relevance

The segmentation outputs of the Progressive 
Layered U-Net (PLU-Net) offer significant potential to 
directly assist clinicians in the diagnosis and treatment 
planning of brain tumors, enhancing precision and 
efficiency in clinical workflows. In diagnosis, PLU-Net's 
high Dice coefficient (0.91) and low Hausdorff95 
distance (2.5) on the BraTS 2021 dataset enable accurate 
delineation of tumor boundaries, including enhancing 

cores, edema, and non-enhancing regions (as shown in 
Figure 10). This precision can aid radiologists in 
distinguishing malignant from benign tumors and 
assessing tumor grade, reducing diagnostic uncertainty 
compared to manual segmentation, which is time-
consuming and prone to inter-observer variability. For 
treatment planning, PLU-Net's outputs can support 
surgical guidance by providing 3D tumor maps that 
highlight critical structures, such as the tumor core and 
surrounding edema, allowing neurosurgeons to plan 
resection margins with greater confidence and minimize 
damage to healthy tissue. For example, the model's ability 
to segment multi-modal MRI data (T1, T1ce, T2, FLAIR) 
ensures comprehensive visualization of tumor extent, 
which is vital for optimizing surgical trajectories. 
Additionally, PLU-Net can facilitate therapy monitoring 
by enabling longitudinal tracking of tumor volume and 
characteristics post-treatment. Serial MRI scans 
segmented by PLU-Net could quantify changes in tumor 
size or edema in response to radiation or chemotherapy, 
offering clinicians objective metrics to evaluate treatment 
efficacy and adjust therapeutic strategies. By integrating 
these outputs into clinical decision-support systems, PLU-
Net has the potential to streamline workflows, improve 
patient-specific treatment plans, and ultimately enhance 
outcomes in brain tumor management.

3.5 Future Work

A 3D PLU-Net could leverage volumetric 
information directly from MRI scans, potentially 
improving segmentation accuracy by capturing spatial 
relationships across all three dimensions, which are 
partially lost in the 2D approach. This could be 
particularly beneficial for detecting small or irregularly 
shaped tumors, though it would require increased 
computational resources and optimization to manage 
memory constraints. Second, integrating PLU-Net with 
radiomics could expand its clinical relevance. By 
extracting quantitative features (e. g., texture, shape, 
intensity) from segmented tumor regions, the model 
could support radiogenomic analysis, linking imaging 
characteristics to genetic profiles or treatment responses. 
This would enhance its role in personalized medicine, 
such as predicting tumor aggressiveness or therapy 
outcomes. Finally, validating PLU-Net on diverse 
datasets beyond BraTS 2021, such as The Cancer 
Imaging Archive (TCIA), would test its robustness across 
varied patient populations, tumor types, and imaging 
protocols. The TCIA dataset, with its broader range of 
glioma cases and scanner differences, could reveal biases 
or limitations in the current model and guide adaptations 
for real-world deployment. These future directions—3D 
implementation, radiomics integration, and multi-dataset 
validation—offer exciting opportunities to refine PLU-
Net, broaden its scope, and strengthen its impact on brain 
tumor management.

Fig.10 Comparison of predicted segmentation masks (red) and 
ground truth masks (blue) with MRI scan (grey)
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4 Conclusion

The segmentation of brain tumors from MRI images 
remains a complex task due to the variability in tumor 
appearance and location. This paper introduces the 
Progressive Layered U-Net (PLU-Net), an advanced deep 
learning architecture designed to tackle these challenges. 
By incorporating progressive layering, attention 
mechanisms, and multi-scale data augmentation, PLU-
Net achieves a Dice coefficient of 0.91 on the BraTS 
2021 dataset, surpassing many existing methods and 
marking a significant advancement in segmentation 
accuracy. Beyond its technical achievements, PLU-Net 
offers valuable insights and benefits to a wide range of 
readers. For researchers in medical imaging and artificial 
intelligence, this work provides a novel framework that 
combines multi-stage refinement and attention-driven 
feature selection, inspiring further innovation in deep 
learning architectures for healthcare applications. The 
detailed methodology, ablation studies, and open-source 
code (available at https://github. com/NomanAhmed02/
Source-code) empower the scientific community to 
replicate, refine, and extend our approach, fostering 
collaborative progress in brain tumor segmentation. For 
clinicians, PLU-Net delivers precise tumor delineations 
that can enhance diagnostic confidence and inform 
treatment planning, such as identifying resection margins 
for surgery or tracking tumor changes during therapy 
(Section 4.4). This could translate into improved patient 
outcomes by reducing diagnostic delays and optimizing 
therapeutic decisions. For patients and their families, the 
improved accuracy of PLU-Net represents a step toward 
more reliable diagnoses and personalized care, offering 
hope for better management of brain tumors—a condition 
with profound physical and emotional impacts. 
Ultimately, PLU-Net advances the field technically and 
bridges the gap between AI innovation and tangible real-
world benefits, setting a foundation for future research 
and clinical integration.
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