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Abstract: Deep stochastic configuration networks (DSCNs) produce redundant hidden nodes and connections
during training, which complicates their model structures. Aiming at the above problems, this paper proposes a
double pruning structure design algorithm for DSCNs based on mutual information and relevance. During the
training process, the mutual information algorithm is used to calculate and sort the importance scores of the nodes
in each hidden layer in a layer-by-layer manner, the node pruning rate of each layer is set according to the depth
of the DSCN at the current time, the nodes that contribute little to the model are deleted, and the network-related
parameters are updated. When the model completes the configuration procedure, the correlation evaluation
strategy is used to sort the global connection weights and delete insignificance connections; then, the network
parameters are updated after pruning is completed. The experimental results show that the proposed structure
design method can effectively compress the scale of a DSCN model and improve its modeling speed; the model
accuracy loss is small, and fine-tuning for accuracy restoration is not needed. The obtained DSCN model has
certain application value in the field of regression analysis.
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1 Introduction

In recent years, deep neural networks (DNNs)
have been widely used in image recognition, data
modeling, and predictive control for industrial
systems!' !, The performance of a deep learning model
is constrained by the network depth and network
width!**]. The larger the network depth is, the stronger
the nonlinear expression ability of the corresponding

DNN. The larger the network width is, the more

features can be learned at each layer of the network!®!.
When faced with complex high-dimensional data, the
performance of a deep model is generally guaranteed
by increasing the number of network nodes or hidden
layers, but these approaches lead to increased
algorithm complexity and overfitting problems.
Finding the appropriate network width and depth while
ensuring the accuracy of the deep model and improving
the modeling speed is an important research direction

with respect to optimizing DNNs.
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At present, the commonly used methods for DNN
compression include quantization, low-rank decomposi-
tion, knowledge distillation, and pruning. Quantization
usually refers to replacing an original high bit width
with a low bit width to achieve the goals of improving
the parallel processing capability of the system and
reducing the memory bandwidth. However, low-bit
quantization, with its discrete nature, often leads to
instability in the deep learning model training process
and a serious accuracy loss!”®. A larger bit width
forms a quantized deep learning model without
significant speedup and scale changes”. Low-rank
decomposition is often used to accelerate neural
networks''”, but problems such as low compression
rates and reduced accuracy rates occur'''). Knowledge

distillation!'?

refers to distilling relevant knowledge
from a trained teacher model to a student model to
obtain higher accuracy, but this method has difficulty
optimizing deeper DNNSs, and a single static teacher
model may introduce noise information when training
the student model, causing the student model to be

limited by its teacher model"!

. Compared with the
above three compression strategies, the pruning
method is more intuitive and can directly remove
irrelevant parameters from a network to achieve
sparseness in the deep learning model structure.
According to different pruning objects, this method
divided

structured pruning. Unstructured pruning generally

can be into unstructured pruning and
removes redundant connections and is a type of
fine-grained pruning. For example, Han et al.l”!
proposed a hybrid deep compression strategy based on
pruning, trained quantization and Huffman coding,
thereby maximizing the compression of convolutional
neural networks while considering the accuracy and

hardware storage issues. [13]

Migue proposed an
amplitude-based pruning strategy, which describes
pruning as an optimization problem and automatically
learns the optimal number of weights for pruning in
each hidden layer of the given neural network. In [16],
an evaluation criterion based on the importance levels
of activation weights was proposed to screen out

weights with low contribution rates; this technique can

effectively prune densely connected network
parameters. Unstructured pruning methods induce
small accuracy losses in deep learning models, and the
accuracy can be recovered through fine-tuning.
Structured pruning methods change the learning
model’s structure and belong to the coarse-grained
pruning category. In [17], through Fisher's linear
discriminant analysis approach, the paper pointed out
that starting from the last convolutional layer, the
activation values between neurons are highly
irrelevant, so it is preferable to delete hidden nodes
with less information. Luo!'* regarded filter pruning
as an optimization problem and decided whether to
prune according to the information contained in the
next layer of a convolutional network. When a
structured pruning method is adopted and the pruning
object setting is unreasonable, the accuracy of the
model will greatly decrease. In addition, a
proportional pruning rate is set for the hidden layers
during pruning, but it needs to be considered that the
amounts of information contained in different hidden
layers are generally different. This type of fixed
pruning rate may lead to the incorrect deletion of some
important hidden nodes in the network, which has

irreversible effects on the perform- ance of a DNN.

Deep  stochastic  configuration  networks
(DSCNs)!' were proposed by Wang and Li. A DSCN
randomly generates hidden nodes through a

supervision mechan- ism, and it easily produces nodes
that contribute little to modeling, increasing the
structural complexity of the network and the difficulty
of modeling. Therefore, this paper proposes a double
pruning structure design method based on mutual
information and relevance for DSCNs, and this
method is called mutual information-relevance-
DSCNs (MI-R-DSCNs). The pruning opera-tion based
on mutual information is aimed at the hidden network
nodes. It calculates the mutual information values
between the activation values of the hidden nodes and
the output variable in a layer-by-layer manner.
According to the mutual information values, the
hidden nodes with low contributions are pruned, and

the DSCN structures are pruned. The pruning
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operation based on relevance is aimed at the
connection weights between the hidden nodes. It
analyzes the importance of each weight, filters out the
unimportant weights and sets them to zero, and finally
realizes structural sparseness. Through function
approximation and regression experi- ments, it is
proven that the method proposed in this paper can
effectively compress the scale of a DSCN and improve
its modeling speed.

The rest of this paper is arranged as follows.
Section 2 introduces DSCNs and their existing
MI-R-DSCN

algorithm, and Section 4 conducts an experimental

problems, Section 3 presents the
evaluation of the proposed method. Finally, Section 5
is the conclusion.

2 Reviewing DSCNs and Analyzing Ex-

isting Problems

In this section, the basic theory, structure and
existing problems of DSCNs are introduced.

2.1 Theory and Structure of DSCNs

Stochastic learning algorithms can effectively
avoid the problem of falling into local optima due to
gradient descent, and they have great potential in fast
dynamic modeling and processing real-time data®”’.
The stochastic configuration network (SCN)!
proposed by Wang and Li is a typical stochastic
learning algorithm. On this basis, Wang and Li
proposed the DSCN algorithm, which has been applied
in the field of industrial big data analysis and data flow
learning™?*. Fig.1 shows the structure of a DSCN
with two hidden layers, and we can see from the figure
that this DSCN is a typical fully connected neural
network. However, the obvious difference between a
standard fully connected feedforward neural network
and a DSCN is that the former only requires the output
result to be represented by the fully connected learning
between the last hidden layer and the output layer,
while a DSCN requires the full connections between
each hidden layer and the output layer, and such
learned representations can provide greater flexibility

in terms of regression and classification'”’.
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Fig.1 N-L,-L,-1 DSCN Model

The specific implementation process of a DSCN
is as follows. Given a target function F: R — R and a
training dataset {X, Y} which the number of samples is
N, the outputs of the DSCN can be denoted by:

n L
F;:’) =33 8, (x(kfl);w(jkfl)’bgk—l)) m
k=1 j=1
where S, = {Ly, La,..., L,} represents the set of hidden

node numbers in each layer, g, j(x(k_l);wﬁ.k_l),bﬁk_l))

and B!" respectively represent the random basis
functions and output weights of the j-th node within the
k-th hidden layer, wﬁkil) and bﬁkil) are the input

weights and biases of the j-th node within the k-th
hidden layer, respectively, and x(k) = [gk,1, Qk2,- - -» Chork]
and x(0) = x represent the inputs of each hidden layer.
When the n-th hidden layer already has L,-1 nodes, the

error is expressed as:

el =g (X)=Y-F

T
=[ e ()l (3]

Suppose that the span (I') is dense in the L, space,

)

given 0 <r <1 and a nonnegative decreasing sequence
{u;}, where u; < (1 —r) and lim u; = 0 when #» tends to
o, the L,-th node within n-th hidden layer must satisfy:
() pm\’
(e-1i?)
6" =L"—L"2—(1—r—u)
(i)

where h{ represents the output value of this hidden

rzo 3)

()
€L,

node.
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Under the

mechanism shown in (3), a DSCN randomly configures

constraint of the supervision
its hidden nodes layer by layer in an incremental
manner and then uses the global least-squares
algorithm to update the readout weights as in (4). When
the condition for stopping the training of the hidden
layers is satisfied, the training process of the current
hidden

configuration process is repeated for the hidden nodes

layer is completed. Then, the above

until the termination condition of model training is
reached.

n L 2

zz gkj

k=1 j=

=arg mm

“4)

2.2 Issues Faced by DSCNs

Although DSCNs can generate high-quality
hidden nodes through their supervision mechanisms
and have great advantages in terms of fast modeling,
the following problems remain.

(1) The numbers of network layers and hidden
nodes may be set unreasonably. When the number of
network layers or hidden nodes is set too large, a large
number of insignificance connections and hidden
nodes which are irrelevant or redundant may be present
in the DSCN, which will increase the computational
and structural complexity of the network and cause
overfitting. In contrast, the generalization ability of
DSCNs is insufficient.

(2) The hidden node parameters are random.
Since the weights and biases of the hidden nodes of a
DSCN are randomly configured under the supervision
mechanism, the nodes that are generated during the
modeling process of the DSCN may contribute very
little to the output. For example, the hidden nodes that
cause a small decrease in the expected error after
configuration, the nodes that are similar, and the
between nodes that are

connections adjacent

insignificance also complicate the model structure.
3 MI-R-DSCN

To solve the problems of DSCNs, because
deleting redundant hidden nodes can directly reduce

the size of a DSCN and its parameters directly affect

the subsequent parameter configuration process,
mutual information is used to evaluate the relationships
between the hidden nodes and target outputs in a layer
wise manner to achieve structured pruning. In addition,
considering the mutual influence between adjacent
hidden layers, a pruning strategy based on weight
relevance is proposed to realize unstructured pruning.
Finally, the MI-R-DSCN algorithm is obtained.

3.1 Structured Pruning Based on Mutual
Information

Pruning algorithms generally require pruning the
hidden nodes that have little impact on performance

from deep learning models!"”

, maintaining the original
network performance as much as possible, and
building a lightweight deep model. How to evaluate the
importance of hidden nodes is the focus of pruning
research. There is a difference between DSCNs and
traditional neural networks, such as backpropagation
neural networks. A DSCN only iterates once to
determine the optimal network parameters, and the
training of its next hidden layer is affected by the
dataflow of the previous layer. If a DSCN is directly
pruned from the perspective of global pruning after the
training process is completed, thereby ignoring the
influence of the data on the model during the training
process*!!, the generalization ability of the DSCN
deteriorates.

Mutual information is often used to measure the
degree of association between two random variables.
Therefore, this section proposes a mutual information-
DSCN (MI-DSCN) algorithm for

dynamic node pruning based on mutual information;

layer-by-layer

this approach can evaluate the degree of association
between the hidden nodes of each layer and the
expected output in a layer-by-layer manner during the
DSCN training process, calculate the level of
correlation between the hidden nodes and the expected
output, and then use the evaluation results as the
judgment basis for pruning to realize local DSCN
MI-DSCN

correlation between the hidden nodes and the output by

pruning. The algorithm judges the

calculating the mutual information value between the
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activation value of the nodes and the output variable,
uses the correlation as the basis for judging the
importance of the hidden nodes, and filters out the
nodes in the hidden layer whose output values in the
hidden are most suitable relative to the expected output
value. Assuming that the number of training samples is
N and the output variable is Y = {y, s, ..., yn}, the
activation matrix of the i-th hidden node within the n-th

hidden layer can be expressed as:

NPT S

H(K") and H(Y) are used to denote the activation
entropy of the i-th hidden node within the n-th hidden
layer and the information entropy of the output variable
Y, respectively. The larger the information entropy is,
the more information it contains. The mutual
information I between A" and variable Y, that is, the
importance score s, ; of the hidden node, can be

expressed as:

s, =1" (6)

1" =H (K" )+ H(Y)-H(K".Y) (7)

1

where H(h", Y) represents the joint entropy of vector
A" and variable Y. When the mutual information value
I”is 0, it means that the hidden node and the expected
output are uncorrelated or independent of each other,
having little effect on the construction of the DSCN. In
contrast, the larger /\” is, the higher the correlation
between this node and the expected output, the more
intersecting information, and the more important role
this node plays in the model. The value of the vector
A" is divided into D, intervals, and the value of the
vector Y is divided into D, intervals. Then, p{, and p;
represent the probabilities that the values of vectors 4"
and Y are distributed in intervals m and j, respectively.

The calculation formulas are expressed as:

H(h[(”)) — _% p[(f:’z log, (p,(’:g) ®)
m=1

H(Y)==3 p,log (p,) ©)

j=1

H(K,Y)==% ¥ p(g.y)log, p(g.y) (10)

geD, yeD,

where pi, = 0 and p; = 0. The larger s,; is, the
greater the contribution of the corresponding hidden
node in the node set of the n-th hidden layer. Therefore,
after sorting the nodes of the n-th layer according to

their node importance scores, we obtain:
’ > 4 > > ’
Sn’] /Sn,Z /"'/anL” (11)

Generally, pruning algorithms require a large
degree of pruning at the beginning of the iterative
process and a lower pruning rate in the later stage of
iteration. This is because a neural network based on the
gradient descent algorithm searches for the global
optimal solution through iterations. In the later stage,
the performance of the learning model tends to be
stable and is no longer suitable for large-scale pruning.
However, the DSCN does not need to iteratively find
the optimal solution, so it needs to maintain a low
pruning rate at the beginning of training to ensure that
the DSCN model is built quickly. In the middle of
training, the DSCN can delete redundant nodes from
the model through large-scale pruning. Although
large-scale pruning causes the accuracy of the DSCN to
decrease, the accuracy will be restored when the hidden
layers are constructed later. At the end of training, the
structure of the DSCN has been basically determined,
so it is necessary to set a low pruning rate. The node
pruning rate threshold for the hidden layers is defined
as a, and the pruning rate within the 4-th hidden layer of
the DSCN is pr(k) by (12). When the learning
coefficient ¢ is 2a/(M-1)?, the curve of the function pr(k)
is shown in Fig.2. It can be seen that the node pruning
rate of the hidden layers increases first and then
decreases with the depth of the network so that the
network can achieve low pruning in the early and late

stages and high pruning in the middle.
M +1

pr(k)z—c-(k— ] +a,k=12,.M (12)

where 0 <a<l, 0 <c < 4a/(M-1)’, and M is the
maximum number of hidden layers. When a=0 and ¢=0
are satisfied, the MI-DSCN algorithm degenerates to
the DSCN algorithm. After sorting and pruning the
hidden nodes within the n-th hidden layer by (11) and

(12), the number of nodes remaining in this layer can
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be expressed as:
num(n)=round(L”'*(1—pr(n))) (13)

where L, represents the number of hidden nodes in the
n-th hidden layer after the configuration process is
completed, and pr(n) represents the hidden node
pruning rate within the n-th hidden layer. When the
dynamic layer-by-layer DSCN pruning procedure is
completed, the global hidden node pruning rate Ap of
the DSCN is calculated:

ZLI.’ —Znum(j)
_ Al =1

Ap - x100% (14)
2L
i=1
a _
)
=
=
s |
o
O 1 1 1 1 1 1 1 1
(n+1)2 n

k

Fig.2 Curve of the function pr(k)

In summary, the process of the pruning part of the
MI-DSCN algorithm is as follows.

Step 1: Evaluate the importance of the hidden
nodes. Calculate the mutual information values
between the activation values of the hidden nodes
within the k-th hidden layer and the expected output by
(6) and (7), and use these values as the evaluation
standard of hidden node importance.

Step 2: Sort the hidden nodes. Sort the hidden
nodes within the £-th layer from large to small by (11).

Step 3: Delete the unimportant hidden nodes and
their connection weights. Sort the nodes within the k-th
layer according to the importance scores calculated in
Step 1, only keep the first num(k) nodes after sorting,
prune the related parameters of the remaining nodes

from the original DSCN structure, and update the

DSCN parameters.

Step 4: Determine whether the model training
process terminates. If the conditions for terminating the
training of the DSCN are not met after pruning,
construct nodes within the (k+1)-th layer, and repeat
Step 1-3 for the (k+1)-th layer. Otherwise, the pruning
operation is completed.

3.2 Unstructured Pruning Based on Weight
Relevance

Unstructured pruning algorithms usually regard a
weight whose absolute value is greater than the weight
pruning threshold as an important weight. If the norm
value of the weight is used as the only criterion for
weight pruning and the influence of the weights on the
connections between adjacent hidden layer nodes is
ignored, this may cause the important weights that have
direct impacts on the network parameters of the next
hidden layer to be misjudged as unimportant weights
and incorrectly deleted. Therefore, we propose a
method for judging the importance of connections
based on the relevance strategy, where a node considers
its own weight and its impact on the weights of the next
hidden

importance scores of the weights can be expressed as:

layer of connections. The connection

1 .
o =)+ 2] k=01 2
Ly m=t (15)
191(1;) :‘Wx(k/) 5 k=n-1

where w{; represents the connection weights between

the i-th node within the k-th hidden layer and the j-th
node within the (k+1)-th hidden layer, w{) represents
the connection weights between the input layer and the
first hidden layer, and L., indicates the number of
existing hidden nodes in the (k+1)-th hidden layer. The
smaller 9% is, the less important the connection weight
is, and the associated node is listed as the priority
pruning object. Therefore, after sorting the global
connection weights according to their connection

importance scores, we obtain:

191(’(1))’ 2212“;), 2...279?’_1)”' (16)

In summary, the pruning strategy based on weight
relevance includes the following steps.
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Step 1: Evaluate the importance of the connection
weights between the hidden nodes. Calculate the
importance score of the connection weight between
each pair of hidden nodes by (15).

Step 2: Sort the connection weights. Sort the
global connection weights from large to small by (16).

Step 3: Prune the weights. Set the global weight
pruning ratio b, reset the weights to 0, convert the
high-dimensional sparse weight matrix into a
compressed sparse matrix, update the parameters of the

DSCN, and complete the pruning operation.

3.3 MI-R-DSCN Algorithm

A structural pruning strategy can reduce the
required modeling time but may result in a loss of
accuracy. The unstructured pruning strategy is the
opposite. Based on the above analysis, this section
further proposes a double pruning MI-R-DSCN algor-
ithm on the basis of the two pruning methods proposed
in the previous sections to achieve maximum DSCN
compression. The pseudo code of the MI-R-DSCN

algor- ithm is as follows.

Algorithm 1: Mutual information-relevance-deep stochastic configuration networks

Input: Dataset { X, Y }: The maximum number of hidden layers, M; The maximum mumber of hidden

. . (n) | . . . .
nodes within the n-th hidden layer,Lj,a.: The expected error tolerance. € The maximum times of
random configuration, T The hidden node parameter configuration range, [=A, A]

Output: The maodel of MI-R-DSCN
.f|. g I'.\,l. HAOAW = Is
while n <M and tf,“ [ =¢ do

e 1)
1 Initialization: ¢, " =

2

a | while L, = L0, and e} || »¢ do

4 Randomly configure the group candidate hidden nodes parameters from [—A, AT and [=A, A);

n Calculate the activation matrix b of each candidate node ]I_\.' (5);

6 Save the candidate node parameters .u-:,_“:l_':' and h'l_':__“ satisfving (3) in W, and H}_':_“ in{k

k¢ if W is not emply then

8 Find w}" """ and 6"~ maximizing 81" "', and update H" = [B"" 60",

0 elae

10 Continue: go to step 4;

11 end

12 Set H = :'H..H}_rl'_:'_. calculate 5% = H'Y, f'," =HI - Y. = t;”' and update e = F',"

Ly =Ly +1;

13 end

14 Pruning 1: Layer-by-layer dynamic hidden node pruning based on mutual
information (Step 15 - Step 17)

5 Caleulate the important score -H:_M of the hidden nodes by (6) and (7). and then sort the hidden nodes
b (11):

16 Calculate the pruning rate prin) and numi(n) by (12) and (13), and only keep the first numin) hidden

nodles parameters;
. E . . [m) (R}
17 Update H, W, 3%, ¢, * and ¢, ';
n
18 end

19 Pruning 2: Global weight pruning based on relevance (Step 20 - Step 23)
20 Caleulate the important score @ of the connection weights by (15) and sort the connection weights (16);

21 Set the global weight pruning ratio b, and set the conmection weights listed as the pruning objects to (;

22 Update W oand convert it to a sparse matrix;
[ri)

23 Update H, 3*, and €
24 Return: A MI-R-DSCN model

4 Experiment and Result Analysis

To verify the effectiveness of the MI-R-DSCN

algorithm, function approximation and standard
regression datasets are selected as the experimental
contents. For convenience, the DSCN algorithm based on

mutual information and layer-by-layer dynamic single

pruning is abbreviated as MI-DSCN, and the layer-by-
layer DSCN pruning algorithm based on mutual informa-
tion with a fixed pruning rate is abbreviated as MDSCN.
The experiments are all completed in an environment
with Windows 10 and MATLAB R2016a. The hardware
configuration is an Intel(R) Core (TM) i5-9500 CPU @
3.00 GHZ, and the memory is 8 GB.
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4.1 Function Approximation

The following function”!

is selected to compare
the approximation abilities of the improved DSCN

algorithm and the typical algorithm.

2 2

{ F(x)=02¢ Y w056 O 03
0<x<l

Starting with a uniform distribution, 600 points
are randomly selected as the training dataset and test
training dataset. The parameter settings of the
MI-R-DSCN, DSCN, MI-DSCN and MDSCN
algorithms are shown in Table 2. These models select
the sigmoid function as their activation functions, and
all parameters are obtained after conducting a
validation set test. Commonly used sparse matrix
storage formats include coordinate format (COO),
compressed sparse row format (CSR), compre- ssed
sparse column format (CSC), etc. Because CSR can
quickly perform matrix-vector product operations and
has efficient sparse matrix computing capabilities, this
experiment uses the CSR format to store sparse
matrices. The mean absolute error (MAE) and root
mean square error (RMSE) are selected as the
evaluation indicators of the algorithms.

1

I+e™*

g(x) = sigmoid (x) = (18)

This experiment is mainly used to compare the
effects of different pruning strategies and hidden node
pruning rates on the performance of a DSCN. Under
different hidden node pruning rate thresholds, the
global node pruning rates Ap of the MI-R-DSCN model
with double pruning are shown in Table 2, and they are

correspondingly used as the values of the fixed pruning
rates for the MDSCN. The regression results of the
double-pruned MI-R-DSCN, DSCN, single-pruned
MI-DSCN, and fixed-pruned MDSCN algorithms, as
well as the comparison results of these models in terms
of their global hidden node pruning rates Ap, are shown
in Fig.3. The threshold a of the hidden node pruning
rate in Fig.3 is 0, which means that the deep learning
model is not pruned at this time. When the values of the
node pruning rate and weight pruning rate are both 0,
the MI-DSCN degenerates to the DSCN algorithm.
Each model is independently run 50 times, and the
mean of the evaluation indicators is used as a standard
for evaluating the performance of these deep models.

In Fig.3, as the threshold a of the hidden node
pruning rate becomes larger, the RMSEs and MAEs of
the MI-R-DSCN, MI-DSCN and MDSCN become
larger, and the test times change obviously first and
then slowly, which shows that pruning can speed up the
DSCN, but over pruning leads to poor performance and
a poor generalization ability for the DSCN. When the
node pruning rate threshold « is at a low value, the
RMSEs and MAEs of the MI-R-DSCN, MI-DSCN and
DSCN are similar. The RMSE and MAE of MDSCN
are the largest, which shows that although the
layer-by-layer pruning strategy with a fixed pruning
rate can effectively compress the DSCN, it seriously
affects the fitting accuracy of the DSCN. However,
when the threshold a is set reasonably, the layer-by-layer
dynamic node pruning strategy based on mutual
information can also compress the DSCN and has a
lesser effect on the fitting accuracy of the DSCN.

Table 1 Parameter Settings for the Function Approximation Experiment

Parameter Settings MI-R-DSCN DSCN MI-DSCN MDSCN

Maximum Number of Hidden Layers M 3 3 3 3
Maximum Number of Hidden Nodes L, 50 50 50 50
Maximum Times of Random Configuration 7, 200 200 200 200
Threshold for Node Pruning Rate a {0, 0.05, ...,0.95} — {0, 0.05, ...,0.95} —
Proportion of Global Weight Pruning b 30% — 30% —
Learning Coefficient ¢ 0.75a — 0.75a —
Expected Error of Training & 10™ 10 10 10
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Table 2 Global Node Pruning Rates Ap of the MI-R-DSCN Under Different Hidden Node Pruning Rate Thresholds

Threshold MI-R-DSCN Threshold MI-R-DSCN
a Global Node Pruning Rate Ap a Global Node Pruning Rate Ap
0 0 0.50 35.21%
0.05 2.45% 0.55 36.54%
0.10 5.67% 0.60 40.97%
0.15 8.97% 0.65 44.79%
0.20 13.69% 0.70 48.70%
0.25 16.80% 0.75 52.52%
0.30 20.42% 0.80 57.80%
0.35 23.74% 0.85 60.18%
0.40 27.12% 0.90 65.43%
0.45 30.86% 0.95 69.52%
020 T T T T T T T T T T 014 T T T T T T T T T
0.18 | .
016 L i 0.12
0.14 ——MI-R-DSCN 0.10[ ——MI-R-DSCN |
m 0.12 ——=MI-SCN — ——MI-SCN
wn
2 010 ~——MDSCN 4008 ~——MDSCN
= i
0.08 -
0.06 . 0.06 4
0.04 1 004 |
0.02 e
0 T T I 1 I I | I I 0.02 I ! I I I I
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Pruning threshold-a Pruning threshold-a
(a) Test Results-RMSEs (b) Test Results-MAEs
70 T T 0.012 — T T T T T T T T T
60 - ] 0.010 1
2
g 50 | 4 i
& 0.008
E Q
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Table 3 and Fig.4 show the comparison results
regarding the fitting conditions of the nonlinear
function produced by each method when the
threshold a of the hidden node pruning rate is 0.35 so
that the fitting conditions of the four methods can be
observed more intuitively. From them, when a = 0.35,
all three pruning methods based on the DSCN can
speed up the modeling process, but the RMSE and
MAE of the MDSCN are the largest. The RMSEs and
MAE:s of the MI-R-DSCN and MI-DSCN are similar
to those of the DSCN. The RMSE and MAE of the
MI-R-DSCN are only 0.0006 and 0.0019 higher than

those of the DSCN and 0.0001 and 0.0003 higher
than those of the MI-DSCN, respectively. The global
node pruning rates Ap of the MI-R-DSCN and
MI-DSCN differ by only 1.73%, but 30% of the
connection weights in the MI-R-DSCN model are
assigned 0, which indicates that the MI-R-DSCN
node parameters are fewer than those of the
MI-DSCN. In the case where the MI-R-DSCN has a
larger compression scale than the MI-DSCN, their
accuracy losses are similar, which further leads to the
conclusion that the MI-R-DSCN performs better in
terms of DSCN compression.

Table 3 Comparison of the Results of the MI-R-DSCN, DSCN, MI-DSCN and MDSCN When the Threshold a = 0.35

Evaluation indicator

MI-R-DSCN

DSCN

MI-DSCN

MDSCN

RMSE 0.0024 £+ 0.0005
MAE 0.0030 % 0.0009
Test Time 0.0012 + 0.0003

Global Node Pruning Rate Ap

23.74% % 0.0008

0.0018 £ 0.0001
0.0011 %+ 0.0002
0.0106% 0.0011
0.00% % 0.0011

0.0023 £ 0.0008
0.0027 % 0.0011
0.0032 % 0.0001
22.01% £ 0.0007

0.0558+0.0014
0.0252+0.0017
0.0036% 0.0000
22.02% %+ 0.0013
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Fig.4 Comparison Among the MI-R-DSCN, DSCN, MI-DSCN and MDSCN Algorithms When a=0.35
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4.2 Standard Datasets

4.2.1 Dataset Preparation and Parameter Setting

Dataset preparation stage: The experimental
datasets are selected from the Elevators, Computer
Activity, Treasury and California Housing regression
datasets in the “Knowledge extraction based on
evolutionary learning” standard datasets. For the
convenience of the subsequent descriptions, the four
aforementioned datasets are marked as D1-D4, and the
basic information about the datasets is shown in Table
4. A total of 1000 samples are randomly selected from
each dataset, 80% of which are used as a training
dataset and 20% of which are used as a test dataset.

Algorithm parameter setting stage: The parameter
settings of the DSCN, MI-DSCN, MDSCN, BP and
MI-R-DSCN algorithms are shown in Table 5. All deep
learning models select the sigmoid function as the
activation function. The BP neural network selects the
Levenberg-Marquardt function as its training function,
and its number of iterations is set to 1000. Similarly, the
experiments use the CSR format to store sparse matrices.

The compression ratio comp of the pruned model
is expressed as:

comp =Ap+(1-Ap)xb (20)

where the DSCN, MDSCN, and BP network cannot
contain the weight pruning part, so they all use 0 as the
parameter b when calculating comp. The physical
dimensionality of each feature variable is different, so
it is necessary to normalize the input variables and
output variables to eliminate the influence of the
dimensionality on these deep learning models. The
RMSE, MAE, determination coefficient (R?), test time
and compress- ion ratio comp are selected as
performance evaluation indicators.
4.2.2 Analysis

To further verify of the

MI-R-DSCN algorithm proposed in this paper in the

the effectiveness

regression subfield, we compare the MI-R-DSCN with
the SCN, MI-DSCN, MDSCN and BP network. Each
model is independently run 50 times, and the average
values of the evaluation metrics are used to evaluate these
models’ performance.

When the node pruning rate threshold a of the
MI-R-DSCN and MI-DSCN is set to 0.45, the global
weight pruning rate b of the MI-R-DSCN is 0.5, and the
global hidden node pruning rate Ap of the MI-R-DSCN
model is the same as the value of the fixed pruning rate
of the MDSCN, the regression comparison results ob-
tained by each algorithm on the standard regression
datasets are shown in Fig.5 and Table 6. Comparing the

Table 4 Basic Information of the Standard Regression Datasets

Label Dataset Name Number of Samples Number of Features
D1 Elevators 16599 18
D2 Computer Activity 8192 21
D3 Treasury 1049 15
D4 California Housing 20460 8
Table 5 Parameter Settings for Regression Experiments
Parameter settings DSCN MI-DSCN MDSCN BP MI-R-DSCN
Maximum Number of Hidden Layers M 6 6 6 6 6
Maximum Number of Hidden Nodes L,,,, 100 100 100 100 100
Maximum Times of Random Configuration 7, 200 200 — — 200
Threshold for Node Pruning Rate a — 0.45 — — 0.45
Proportion of Global Weight Pruning b — 50% — — 50%
Learning Coefficient ¢ — 0.054 — — 0.054
Expected Error of Training & 10 10 10 10 10
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Table 6 Comparison Among the Evaluation Criteria Yielded by the DSCN, MI-DSCN, MDSCN,
BP, and MI-R-DSCN Algorithms
Algorithm
Dataset Label Evaluation Indicators
DSCN MI-DSCN MDSCN BP MI-R-DSCN
RMSE 0.0582 0.0506 0.0676 0.0870 0.0513
MAE 0.0380 0.0302 0.0447 0.0634 0.0312
D1 R? 0.7490 0.8227 0.6613 0.4379 0.8118
Test Time #/s 0.0139 0.0065 0.0042 0.0730 0.0018
Compression Ratio comp 0.00% 32.17% 34.75% 0.00% 67.38%
RMSE 0.0423 0.0385 0.0438 0.0816 0.0396
MAE 0.0181 0.0176 0.0179 0.0547 0.0177
D2 R? 0.9602 0.9620 0.8835 0.5948 0.9571
Test Time #/s 0.0129 0.0052 0.0046 0.0524 0.0024
Compression Ratio comp 0.00% 33.84% 31.61% 0.00% 67.37%
RMSE 0.0153 0.0143 0.0147 0.0342 0.0126
MAE 0.0076 0.0087 0.0093 0.0289 0.0072
D3 R’ 0.9939 0.9949 0.9933 0.9692 0.9958
Test Time #/s 0.0125 0.0043 0.0056 0.0416 0.0029
Compression Ratio comp 0.00% 30.00% 33.96% 0.00% 65.3%
RMSE 0.1187 0.1340 0.1581 0.1355 0.1181
MAE 0.0899 0.0978 0.1062 0.1080 0.0896
D4 R2 0.6644 0.6588 0.4048 0.5632 0.6679
Test Time #/s 0.0116 0.0015 0.0074 0.0210 0.0010

Compression Ratio comp 0.00% 31.04% 34.13% 0.00% 67.20%
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regression results of D1 and D2, it can be seen that the
fitting RMSE, MAE, and R’ of the MI-DSCN are the
smallest, while the RMSE, MAE, and R’® of the
MI-R-DSCN are similar to those of the MI-R-DSCN;
the compression ratios comp of the MI-R-DSCN are
34.67% and 33.53% higher than those of the MI-DSCN,
and its test times are 72.31% and 53.85% shorter than
those of the MI-DSCN on DI and D2, respectively,
indicating that the performance of the double pruning
strategy is better than that of the single-pruning strategy.
Comparing the fitting results obtained on datasets D3
and D4, the evaluation indicators of the MI-R-DSCN are
the best, and the evaluation indicators of BP are the
worst. In summary, when the parameters are set rea-
sonably, the MI-R-DSCN can fit standard regression
datasets well, and it does not cause a significant decrease
in the fitting ability of the DSCN. Moreover, the
MI-R-DSCN can also alleviate the overfitting pheno-
menon of the DSCN caused by unreasonable settings of
the numbers of hidden layers and hidden nodes.

5 Conclusion

To solve the problem that DSCNs generate
redundant hidden nodes and insignificance connections
that can increase the network complexity, this paper
proposes a double pruning MI-R-DSCN algorithm
based on mutual information and correlation. The main
contributions of this paper are as follows.

First, a global weight pruning strategy based on
relevance is proposed. The network weights and the
influences between implicit nodes in adjacent layers are
used as conditions for judging the importance levels of
the connection weights, and the unimportant weights are
reset to zero to realize the sparseness of DSCNSs.

Second, a double pruning method named the
MI-R-DSCN is proposed based on mutual information
and relevance. By dynamically obtaining the node
pruning rate in a layer-by-layer manner, this method
solves the problems of setting the same pruning rate for
each hidden layer and ignoring the different amounts of
information contained in each layer. In addition, the
double pruning strategy can accurately screen and
delete unimportant parameters in the DSCN, and the
loss of model accuracy is small. This strategy solves
the problem of overfitting caused by unreasonable

hyperparameter settings and realizes compression and
acceleration for the DSCN model.

Although the MI-R-DSCN can reduce the required
computation time, this method causes an excessive model
accuracy loss when the pruning ratio is set unreasonably.
In future research, we will consider incorporating the
improved intelligence algorithm into the
MI-R-DSCN algorithm so that the population can find the
best pruning ratio during the optimization process and
further realize a lighter DSCN structure.

swarm
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