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Abstract: Deep stochastic configuration networks (DSCNs) produce redundant hidden nodes and connections 

during training, which complicates their model structures. Aiming at the above problems, this paper proposes a 

double pruning structure design algorithm for DSCNs based on mutual information and relevance. During the 

training process, the mutual information algorithm is used to calculate and sort the importance scores of the nodes 

in each hidden layer in a layer-by-layer manner, the node pruning rate of each layer is set according to the depth 

of the DSCN at the current time, the nodes that contribute little to the model are deleted, and the network-related 

parameters are updated. When the model completes the configuration procedure, the correlation evaluation 

strategy is used to sort the global connection weights and delete insignificance connections; then, the network 

parameters are updated after pruning is completed. The experimental results show that the proposed structure 

design method can effectively compress the scale of a DSCN model and improve its modeling speed; the model 

accuracy loss is small, and fine-tuning for accuracy restoration is not needed. The obtained DSCN model has 

certain application value in the field of regression analysis. 
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1  Introduction 

In recent years, deep neural networks (DNNs) 
have been widely used in image recognition, data 
modeling, and predictive control for industrial 
systems[1-3]. The performance of a deep learning model 
is constrained by the network depth and network 
width[4,5]. The larger the network depth is, the stronger 
the nonlinear expression ability of the corresponding 
DNN. The larger the network width is, the more 

features can be learned at each layer of the network[6]. 
When faced with complex high-dimensional data, the 
performance of a deep model is generally guaranteed 
by increasing the number of network nodes or hidden 
layers, but these approaches lead to increased 
algorithm complexity and overfitting problems. 
Finding the appropriate network width and depth while 
ensuring the accuracy of the deep model and improving 
the modeling speed is an important research direction 
with respect to optimizing DNNs. 
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At present, the commonly used methods for DNN 
compression include quantization, low-rank decomposi- 
tion, knowledge distillation, and pruning. Quantization 
usually refers to replacing an original high bit width 
with a low bit width to achieve the goals of improving 
the parallel processing capability of the system and 
reducing the memory bandwidth. However, low-bit 
quantization, with its discrete nature, often leads to 
instability in the deep learning model training process 
and a serious accuracy loss[7,8]. A larger bit width 
forms a quantized deep learning model without 
significant speedup and scale changes[9]. Low-rank 
decomposition is often used to accelerate neural 
networks[10], but problems such as low compression 
rates and reduced accuracy rates occur[11]. Knowledge 
distillation[12] refers to distilling relevant knowledge 
from a trained teacher model to a student model to 
obtain higher accuracy, but this method has difficulty 
optimizing deeper DNNs, and a single static teacher 
model may introduce noise information when training 
the student model, causing the student model to be 
limited by its teacher model[13]. Compared with the 
above three compression strategies, the pruning 
method is more intuitive and can directly remove 
irrelevant parameters from a network to achieve 
sparseness in the deep learning model structure. 
According to different pruning objects, this method 
can be divided into unstructured pruning and 
structured pruning. Unstructured pruning generally 
removes redundant connections and is a type of 
fine-grained pruning. For example, Han et al.[9] 
proposed a hybrid deep compression strategy based on 
pruning, trained quantization and Huffman coding, 
thereby maximizing the compression of convolutional 
neural networks while considering the accuracy and 
hardware storage issues. Migue[15] proposed an 
amplitude-based pruning strategy, which describes 
pruning as an optimization problem and automatically 
learns the optimal number of weights for pruning in 
each hidden layer of the given neural network. In [16], 
an evaluation criterion based on the importance levels 
of activation weights was proposed to screen out 
weights with low contribution rates; this technique can 

effectively prune densely connected network 
parameters. Unstructured pruning methods induce 
small accuracy losses in deep learning models, and the 
accuracy can be recovered through fine-tuning. 
Structured pruning methods change the learning 
model’s structure and belong to the coarse-grained 
pruning category. In [17], through Fisher's linear 
discriminant analysis approach, the paper pointed out 
that starting from the last convolutional layer, the 
activation values between neurons are highly 
irrelevant, so it is preferable to delete hidden nodes 
with less information. Luo[18] regarded filter pruning 
as an optimization problem and decided whether to 
prune according to the information contained in the 
next layer of a convolutional network. When a 
structured pruning method is adopted and the pruning 
object setting is unreasonable, the accuracy of the 
model will greatly decrease. In addition, a 
proportional pruning rate is set for the hidden layers 
during pruning, but it needs to be considered that the 
amounts of information contained in different hidden 
layers are generally different. This type of fixed 
pruning rate may lead to the incorrect deletion of some 
important hidden nodes in the network, which has 
irreversible effects on the perform- ance of a DNN. 

Deep stochastic configuration networks 
(DSCNs)[19] were proposed by Wang and Li. A DSCN 
randomly generates hidden nodes through a 
supervision mechan- ism, and it easily produces nodes 
that contribute little to modeling, increasing the 
structural complexity of the network and the difficulty 
of modeling. Therefore, this paper proposes a double 
pruning structure design method based on mutual 
information and relevance for DSCNs, and this 
method is called mutual information-relevance- 
DSCNs (MI-R-DSCNs). The pruning opera-tion based 
on mutual information is aimed at the hidden network 
nodes. It calculates the mutual information values 
between the activation values of the hidden nodes and 
the output variable in a layer-by-layer manner. 
According to the mutual information values, the 
hidden nodes with low contributions are pruned, and 
the DSCN structures are pruned. The pruning 



28 YAN Aijun et al: Double Pruning Structure Design for Deep Stochastic Configuration Networks Based on … 
 
 
 
 
 

 

operation based on relevance is aimed at the 
connection weights between the hidden nodes. It 
analyzes the importance of each weight, filters out the 
unimportant weights and sets them to zero, and finally 
realizes structural sparseness. Through function 
approximation and regression experi- ments, it is 
proven that the method proposed in this paper can 
effectively compress the scale of a DSCN and improve 
its modeling speed. 

The rest of this paper is arranged as follows. 
Section 2 introduces DSCNs and their existing 
problems, Section 3 presents the MI-R-DSCN 
algorithm, and Section 4 conducts an experimental 
evaluation of the proposed method. Finally, Section 5 
is the conclusion. 

2  Reviewing DSCNs and Analyzing Ex-
isting Problems 

In this section, the basic theory, structure and 
existing problems of DSCNs are introduced. 

2.1  Theory and Structure of DSCNs 

Stochastic learning algorithms can effectively 
avoid the problem of falling into local optima due to 
gradient descent, and they have great potential in fast 
dynamic modeling and processing real-time data[20]. 
The stochastic configuration network (SCN)[21] 
proposed by Wang and Li is a typical stochastic 
learning algorithm. On this basis, Wang and Li 
proposed the DSCN algorithm, which has been applied 
in the field of industrial big data analysis and data flow 
learning[22-24]. Fig.1 shows the structure of a DSCN 
with two hidden layers, and we can see from the figure 
that this DSCN is a typical fully connected neural 
network. However, the obvious difference between a 
standard fully connected feedforward neural network 
and a DSCN is that the former only requires the output 
result to be represented by the fully connected learning 
between the last hidden layer and the output layer, 
while a DSCN requires the full connections between 
each hidden layer and the output layer, and such 
learned representations can provide greater flexibility 
in terms of regression and classification[19]. 

 
 

Fig.1  N-L1-L2-1 DSCN Model 
 
The specific implementation process of a DSCN 

is as follows. Given a target function F: Rd → R and a 
training dataset {X, Y} which the number of samples is 
N, the outputs of the DSCN can be denoted by: 
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Suppose that the span (Γ) is dense in the L2 space, 
given 0 < r < 1 and a nonnegative decreasing sequence 
{ul}, where ul ≤ (1 − r) and lim ul = 0 when n tends to 
∞, the Ln-th node within n-th hidden layer must satisfy: 
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where h(n) 
Ln represents the output value of this hidden 

node. 
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Under the constraint of the supervision 
mechanism shown in (3), a DSCN randomly configures 
its hidden nodes layer by layer in an incremental 
manner and then uses the global least-squares 
algorithm to update the readout weights as in (4). When 
the condition for stopping the training of the hidden 
layers is satisfied, the training process of the current 
hidden layer is completed. Then, the above 
configuration process is repeated for the hidden nodes 
until the termination condition of model training is 
reached. 

( )
2

*
.

1 1
arg min

kLn
k

j k j
k j

g Y
β

β β
= =

= −  (4) 

2.2  Issues Faced by DSCNs 

Although DSCNs can generate high-quality 
hidden nodes through their supervision mechanisms 
and have great advantages in terms of fast modeling, 
the following problems remain. 

(1) The numbers of network layers and hidden 
nodes may be set unreasonably. When the number of 
network layers or hidden nodes is set too large, a large 
number of insignificance connections and hidden 
nodes which are irrelevant or redundant may be present 
in the DSCN, which will increase the computational 
and structural complexity of the network and cause 
overfitting. In contrast, the generalization ability of 
DSCNs is insufficient. 

(2) The hidden node parameters are random. 
Since the weights and biases of the hidden nodes of a 
DSCN are randomly configured under the supervision 
mechanism, the nodes that are generated during the 
modeling process of the DSCN may contribute very 
little to the output. For example, the hidden nodes that 
cause a small decrease in the expected error after 
configuration, the nodes that are similar, and the 
connections between adjacent nodes that are 
insignificance also complicate the model structure. 

3  MI-R-DSCN 

To solve the problems of DSCNs, because 
deleting redundant hidden nodes can directly reduce 
the size of a DSCN and its parameters directly affect 

the subsequent parameter configuration process, 
mutual information is used to evaluate the relationships 
between the hidden nodes and target outputs in a layer 
wise manner to achieve structured pruning. In addition, 
considering the mutual influence between adjacent 
hidden layers, a pruning strategy based on weight 
relevance is proposed to realize unstructured pruning. 
Finally, the MI-R-DSCN algorithm is obtained. 

3.1  Structured Pruning Based on Mutual 
Information 

Pruning algorithms generally require pruning the 
hidden nodes that have little impact on performance 
from deep learning models[17], maintaining the original 
network performance as much as possible, and 
building a lightweight deep model. How to evaluate the 
importance of hidden nodes is the focus of pruning 
research. There is a difference between DSCNs and 
traditional neural networks, such as backpropagation 
neural networks. A DSCN only iterates once to 
determine the optimal network parameters, and the 
training of its next hidden layer is affected by the 
dataflow of the previous layer. If a DSCN is directly 
pruned from the perspective of global pruning after the 
training process is completed, thereby ignoring the 
influence of the data on the model during the training 
process[24], the generalization ability of the DSCN 
deteriorates. 

Mutual information is often used to measure the 
degree of association between two random variables. 
Therefore, this section proposes a mutual information- 
DSCN (MI-DSCN) algorithm for layer-by-layer 
dynamic node pruning based on mutual information; 
this approach can evaluate the degree of association 
between the hidden nodes of each layer and the 
expected output in a layer-by-layer manner during the 
DSCN training process, calculate the level of 
correlation between the hidden nodes and the expected 
output, and then use the evaluation results as the 
judgment basis for pruning to realize local DSCN 
pruning. The MI-DSCN algorithm judges the 
correlation between the hidden nodes and the output by 
calculating the mutual information value between the 
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activation value of the nodes and the output variable, 
uses the correlation as the basis for judging the 
importance of the hidden nodes, and filters out the 
nodes in the hidden layer whose output values in the 
hidden are most suitable relative to the expected output 
value. Assuming that the number of training samples is 
N and the output variable is Y = {y1, y2, ..., yN}, the 
activation matrix of the i-th hidden node within the n-th 
hidden layer can be expressed as: 

( ) ( )( ) ( )( ) T
1 1

, 1 ,,...,n n n
i n i n i Nh g x g x− − =    (5) 

H(h(n) 
i ) and H(Y) are used to denote the activation 

entropy of the i-th hidden node within the n-th hidden 
layer and the information entropy of the output variable 
Y, respectively. The larger the information entropy is, 
the more information it contains. The mutual 
information I(n) 

i  between h(n) 
I  and variable Y, that is, the 

importance score sn, j of the hidden node, can be 
expressed as: 
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where H(h(n) 
i , Y) represents the joint entropy of vector  

h(n) 
i and variable Y. When the mutual information value  

I(n) 
i is 0, it means that the hidden node and the expected 

output are uncorrelated or independent of each other, 
having little effect on the construction of the DSCN. In 
contrast, the larger I (n) 

i is, the higher the correlation 
between this node and the expected output, the more 
intersecting information, and the more important role 
this node plays in the model. The value of the vector  
h(n) 

i is divided into Dh intervals, and the value of the 
vector Y is divided into Dy intervals. Then, p(n) 

i,m and pj 
represent the probabilities that the values of vectors h(n) 

i

and Y are distributed in intervals m and j, respectively. 
The calculation formulas are expressed as: 
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where p(n) 
i,m ≥ 0 and pj ≥ 0. The larger sn,j is, the 

greater the contribution of the corresponding hidden 
node in the node set of the n-th hidden layer. Therefore, 
after sorting the nodes of the n-th layer according to 
their node importance scores, we obtain: 

,1 ,2 , nn n n Ls s s′ ′ ′≥ ≥ ≥  (11) 

Generally, pruning algorithms require a large 
degree of pruning at the beginning of the iterative 
process and a lower pruning rate in the later stage of 
iteration. This is because a neural network based on the 
gradient descent algorithm searches for the global 
optimal solution through iterations. In the later stage, 
the performance of the learning model tends to be 
stable and is no longer suitable for large-scale pruning. 
However, the DSCN does not need to iteratively find 
the optimal solution, so it needs to maintain a low 
pruning rate at the beginning of training to ensure that 
the DSCN model is built quickly. In the middle of 
training, the DSCN can delete redundant nodes from 
the model through large-scale pruning. Although 
large-scale pruning causes the accuracy of the DSCN to 
decrease, the accuracy will be restored when the hidden 
layers are constructed later. At the end of training, the 
structure of the DSCN has been basically determined, 
so it is necessary to set a low pruning rate. The node 
pruning rate threshold for the hidden layers is defined 
as a, and the pruning rate within the k-th hidden layer of 
the DSCN is pr(k) by (12). When the learning 
coefficient c is 2a/(M-1)2, the curve of the function pr(k) 
is shown in Fig.2. It can be seen that the node pruning 
rate of the hidden layers increases first and then 
decreases with the depth of the network so that the 
network can achieve low pruning in the early and late 
stages and high pruning in the middle.  

( )
21 , 1,2,...

2
Mpr k c k a k M+ = − ⋅ − + = 

   
 (12) 

where 0 ≤ a<1, 0 ≤ c ≤ 4a/(M−1)2, and M is the 

maximum number of hidden layers. When a=0 and c=0 
are satisfied, the MI-DSCN algorithm degenerates to 
the DSCN algorithm. After sorting and pruning the 
hidden nodes within the n-th hidden layer by (11) and 
(12), the number of nodes remaining in this layer can 
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be expressed as: 

( ) ( )( )( )1nnum n round L pr n′= ∗ −  (13) 

where Lnˊ represents the number of hidden nodes in the 
n-th hidden layer after the configuration process is 
completed, and pr(n) represents the hidden node 
pruning rate within the n-th hidden layer. When the 
dynamic layer-by-layer DSCN pruning procedure is 
completed, the global hidden node pruning rate ∆p of 
the DSCN is calculated: 
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Fig.2  Curve of the function pr(k) 
 

In summary, the process of the pruning part of the 
MI-DSCN algorithm is as follows. 

Step 1: Evaluate the importance of the hidden 
nodes. Calculate the mutual information values 
between the activation values of the hidden nodes 
within the k-th hidden layer and the expected output by 
(6) and (7), and use these values as the evaluation 
standard of hidden node importance. 

Step 2: Sort the hidden nodes. Sort the hidden 
nodes within the k-th layer from large to small by (11). 

Step 3: Delete the unimportant hidden nodes and 
their connection weights. Sort the nodes within the k-th 
layer according to the importance scores calculated in 
Step 1, only keep the first num(k) nodes after sorting, 
prune the related parameters of the remaining nodes 
from the original DSCN structure, and update the 

DSCN parameters. 
Step 4: Determine whether the model training 

process terminates. If the conditions for terminating the 
training of the DSCN are not met after pruning, 
construct nodes within the (k+1)-th layer, and repeat 
Step 1-3 for the (k+1)-th layer. Otherwise, the pruning 
operation is completed. 

3.2  Unstructured Pruning Based on Weight 
Relevance 

Unstructured pruning algorithms usually regard a 
weight whose absolute value is greater than the weight 
pruning threshold as an important weight. If the norm 
value of the weight is used as the only criterion for 
weight pruning and the influence of the weights on the 
connections between adjacent hidden layer nodes is 
ignored, this may cause the important weights that have 
direct impacts on the network parameters of the next 
hidden layer to be misjudged as unimportant weights 
and incorrectly deleted. Therefore, we propose a 
method for judging the importance of connections 
based on the relevance strategy, where a node considers 
its own weight and its impact on the weights of the next 
hidden layer of connections. The connection 
importance scores of the weights can be expressed as: 
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where w(k) 
i,j  represents the connection weights between 

the i-th node within the k-th hidden layer and the j-th 
node within the (k+1)-th hidden layer, w(0) 

i,j represents 
the connection weights between the input layer and the 
first hidden layer, and Lk+1˝ indicates the number of 
existing hidden nodes in the (k+1)-th hidden layer. The 
smaller ϑ(k) 

i,j is, the less important the connection weight 
is, and the associated node is listed as the priority 
pruning object. Therefore, after sorting the global 
connection weights according to their connection 
importance scores, we obtain: 

( ) ( ) ( )
1

10
1,1 , ,n n

nk
i j L Lϑ ϑ ϑ

−
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In summary, the pruning strategy based on weight 
relevance includes the following steps. 
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4.1  Function Approximation 

The following function[25] is selected to compare 
the approximation abilities of the improved DSCN 
algorithm and the typical algorithm. 

( ) ( ) ( ) ( )2 2 210 4 80 40 80 200.2 0.5 0.3
0 1

x x xf x e e e
x

− − − − − − = + +

 ≤ ≤

(17) 

Starting with a uniform distribution, 600 points 
are randomly selected as the training dataset and test 
training dataset. The parameter settings of the 
MI-R-DSCN, DSCN, MI-DSCN and MDSCN 
algorithms are shown in Table 2. These models select 
the sigmoid function as their activation functions, and 
all parameters are obtained after conducting a 
validation set test. Commonly used sparse matrix 
storage formats include coordinate format (COO), 
compressed sparse row format (CSR), compre- ssed 
sparse column format (CSC), etc. Because CSR can 
quickly perform matrix-vector product operations and 
has efficient sparse matrix computing capabilities, this 
experiment uses the CSR format to store sparse 
matrices. The mean absolute error (MAE) and root 
mean square error (RMSE) are selected as the 
evaluation indicators of the algorithms. 

( ) ( ) 1
1 xg x sigmoid x

e−= =
+

 (18) 

This experiment is mainly used to compare the 
effects of different pruning strategies and hidden node 
pruning rates on the performance of a DSCN. Under 
different hidden node pruning rate thresholds, the 
global node pruning rates ∆p of the MI-R-DSCN model 
with double pruning are shown in Table 2, and they are 

correspondingly used as the values of the fixed pruning 
rates for the MDSCN. The regression results of the 
double-pruned MI-R-DSCN, DSCN, single-pruned 
MI-DSCN, and fixed-pruned MDSCN algorithms, as 
well as the comparison results of these models in terms 
of their global hidden node pruning rates ∆p, are shown 
in Fig.3. The threshold a of the hidden node pruning 
rate in Fig.3 is 0, which means that the deep learning 
model is not pruned at this time. When the values of the 
node pruning rate and weight pruning rate are both 0, 
the MI-DSCN degenerates to the DSCN algorithm. 
Each model is independently run 50 times, and the 
mean of the evaluation indicators is used as a standard 
for evaluating the performance of these deep models. 

In Fig.3, as the threshold a of the hidden node 
pruning rate becomes larger, the RMSEs and MAEs of 
the MI-R-DSCN, MI-DSCN and MDSCN become 
larger, and the test times change obviously first and 
then slowly, which shows that pruning can speed up the 
DSCN, but over pruning leads to poor performance and 
a poor generalization ability for the DSCN. When the 
node pruning rate threshold a is at a low value, the 
RMSEs and MAEs of the MI-R-DSCN, MI-DSCN and 
DSCN are similar. The RMSE and MAE of MDSCN 
are the largest, which shows that although the 
layer-by-layer pruning strategy with a fixed pruning 
rate can effectively compress the DSCN, it seriously 
affects the fitting accuracy of the DSCN. However, 
when the threshold a is set reasonably, the layer-by-layer 
dynamic node pruning strategy based on mutual 
information can also compress the DSCN and has a 
lesser effect on the fitting accuracy of the DSCN. 

 
Table 1  Parameter Settings for the Function Approximation Experiment 

Parameter Settings MI-R-DSCN DSCN MI-DSCN MDSCN

Maximum Number of Hidden Layers M 3 3 3 3 

Maximum Number of Hidden Nodes Lmax 50 50 50 50 

Maximum Times of Random Configuration Tmax  200 200 200 200 

Threshold for Node Pruning Rate a {0, 0.05, ...,0.95} — {0, 0.05, ...,0.95} — 

Proportion of Global Weight Pruning b 30% — 30% — 

Learning Coefficient c 0.75a — 0.75a — 

Expected Error of Training ε  10-4 10-4 10-4 10-4 
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Table 2  Global Node Pruning Rates ∆p of the MI-R-DSCN Under Different Hidden Node Pruning Rate Thresholds 

Threshold 
a 

MI-R-DSCN 
Global Node Pruning Rate ∆p 

Threshold 
a 

MI-R-DSCN 
Global Node Pruning Rate ∆p 

0 0 0.50 35.21% 

0.05 2.45% 0.55 36.54% 

0.10 5.67% 0.60 40.97% 

0.15 8.97% 0.65 44.79% 

0.20 13.69% 0.70 48.70% 

0.25 16.80% 0.75 52.52% 

0.30 20.42% 0.80 57.80% 

0.35 23.74% 0.85 60.18% 

0.40 27.12% 0.90 65.43% 

0.45 30.86% 0.95 69.52% 

 

 
 

Fig.3  Comparison of the Results Obtained by the MI-R-DSCN, DSCN, MI-DSCN and MDSCN Under  
Different Thresholds (The Three Improved Algorithms Based on the DSCN Degenerate to the  

DSCN Algorithm When the Threshold a = 0) 
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Table 3 and Fig.4 show the comparison results 
regarding the fitting conditions of the nonlinear 
function produced by each method when the 
threshold a of the hidden node pruning rate is 0.35 so 
that the fitting conditions of the four methods can be 
observed more intuitively. From them, when a = 0.35, 
all three pruning methods based on the DSCN can 
speed up the modeling process, but the RMSE and 
MAE of the MDSCN are the largest. The RMSEs and 
MAEs of the MI-R-DSCN and MI-DSCN are similar 
to those of the DSCN. The RMSE and MAE of the 
MI-R-DSCN are only 0.0006 and 0.0019 higher than 

those of the DSCN and 0.0001 and 0.0003 higher 
than those of the MI-DSCN, respectively. The global 
node pruning rates ∆p of the MI-R-DSCN and 
MI-DSCN differ by only 1.73%, but 30% of the 
connection weights in the MI-R-DSCN model are 
assigned 0, which indicates that the MI-R-DSCN 
node parameters are fewer than those of the 
MI-DSCN. In the case where the MI-R-DSCN has a 
larger compression scale than the MI-DSCN, their 
accuracy losses are similar, which further leads to the 
conclusion that the MI-R-DSCN performs better in 
terms of DSCN compression. 

 
Table 3  Comparison of the Results of the MI-R-DSCN, DSCN, MI-DSCN and MDSCN When the Threshold a = 0.35 

Evaluation indicator MI-R-DSCN DSCN MI-DSCN MDSCN 

RMSE 0.0024 ± 0.0005 0.0018 ± 0.0001 0.0023 ± 0.0008 0.0558 ± 0.0014

MAE 0.0030 ± 0.0009 0.0011 ± 0.0002 0.0027 ± 0.0011 0.0252 ± 0.0017

Test Time 0.0012 ± 0.0003 0.0106 ± 0.0011 0.0032 ± 0.0001 0.0036 ± 0.0000

Global Node Pruning Rate ∆p 23.74% ± 0.0008 0.00% ± 0.0011 22.01% ± 0.0007 22.02% ± 0.0013
 

 
 

Fig.4  Comparison Among the MI-R-DSCN, DSCN, MI-DSCN and MDSCN Algorithms When a = 0.35 
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4.2  Standard Datasets 

4.2.1  Dataset Preparation and Parameter Setting 
Dataset preparation stage: The experimental 

datasets are selected from the Elevators, Computer 
Activity, Treasury and California Housing regression 
datasets in the “Knowledge extraction based on 
evolutionary learning” standard datasets. For the 
convenience of the subsequent descriptions, the four 
aforementioned datasets are marked as D1-D4, and the 
basic information about the datasets is shown in Table 
4. A total of 1000 samples are randomly selected from 
each dataset, 80% of which are used as a training 
dataset and 20% of which are used as a test dataset. 

Algorithm parameter setting stage: The parameter 
settings of the DSCN, MI-DSCN, MDSCN, BP and 
MI-R-DSCN algorithms are shown in Table 5. All deep 
learning models select the sigmoid function as the 
activation function. The BP neural network selects the 
Levenberg-Marquardt function as its training function, 
and its number of iterations is set to 1000. Similarly, the 
experiments use the CSR format to store sparse matrices. 

The compression ratio comp of the pruned model 
is expressed as: 

(1 )comp p p b= Δ + − Δ ×  (20) 

where the DSCN, MDSCN, and BP network cannot 
contain the weight pruning part, so they all use 0 as the 
parameter b when calculating comp. The physical 
dimensionality of each feature variable is different, so 
it is necessary to normalize the input variables and 
output variables to eliminate the influence of the 
dimensionality on these deep learning models. The 
RMSE, MAE, determination coefficient (R2), test time 
and compress- ion ratio comp are selected as 
performance evaluation indicators. 
4.2.2  Analysis 

To further verify the effectiveness of the 
MI-R-DSCN algorithm proposed in this paper in the 
regression subfield, we compare the MI-R-DSCN with 
the SCN, MI-DSCN, MDSCN and BP network. Each 
model is independently run 50 times, and the average 
values of the evaluation metrics are used to evaluate these 
models’ performance. 

When the node pruning rate threshold a of the 
MI-R-DSCN and MI-DSCN is set to 0.45, the global 
weight pruning rate b of the MI-R-DSCN is 0.5, and the 
global hidden node pruning rate Δp of the MI-R-DSCN 
model is the same as the value of the fixed pruning rate 
of the MDSCN, the regression comparison results ob-
tained by each algorithm on the standard regression 
datasets are shown in Fig.5 and Table 6. Comparing the  

 
Table 4  Basic Information of the Standard Regression Datasets 

Label Dataset Name Number of Samples Number of Features 

D1 Elevators 16599 18 

D2 Computer Activity 8192 21 

D3 Treasury 1049 15 

D4 California Housing 20460 8 

 
Table 5  Parameter Settings for Regression Experiments 

Parameter settings DSCN MI-DSCN MDSCN BP MI-R-DSCN 

Maximum Number of Hidden Layers M 6 6 6 6 6 

Maximum Number of Hidden Nodes Lmax 100 100 100 100 100 

Maximum Times of Random Configuration Tmax 200 200 — — 200 

Threshold for Node Pruning Rate a — 0.45 — — 0.45 

Proportion of Global Weight Pruning b — 50% — — 50% 

Learning Coefficient c — 0.054 — — 0.054 

Expected Error of Training ε  10-4 10-4 10-4 10-4 10-4 
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Fig.5  Comparison of the Fitting Results of Algorithms on Standard Datasets 
 

Table 6  Comparison Among the Evaluation Criteria Yielded by the DSCN, MI-DSCN, MDSCN,  
BP, and MI-R-DSCN Algorithms 

Dataset Label Evaluation Indicators 
Algorithm 

DSCN MI-DSCN MDSCN BP MI-R-DSCN 

D1 

RMSE 0.0582 0.0506 0.0676 0.0870 0.0513 
MAE 0.0380 0.0302 0.0447 0.0634 0.0312 

R2 0.7490 0.8227 0.6613 0.4379 0.8118 
Test Time t/s 0.0139 0.0065 0.0042 0.0730 0.0018 

Compression Ratio comp 0.00% 32.17% 34.75% 0.00% 67.38% 

D2 

RMSE 0.0423 0.0385 0.0438 0.0816 0.0396 
MAE 0.0181 0.0176 0.0179 0.0547 0.0177 

R2 0.9602 0.9620 0.8835 0.5948 0.9571 
Test Time t/s 0.0129 0.0052 0.0046 0.0524 0.0024 

Compression Ratio comp 0.00% 33.84% 31.61% 0.00% 67.37% 

D3 

RMSE 0.0153 0.0143 0.0147 0.0342 0.0126 
MAE 0.0076 0.0087 0.0093 0.0289 0.0072 

R2 0.9939 0.9949 0.9933 0.9692 0.9958 
Test Time t/s 0.0125 0.0043 0.0056 0.0416 0.0029 

Compression Ratio comp 0.00% 30.00% 33.96% 0.00% 65.3% 

D4 

RMSE 0.1187 0.1340 0.1581 0.1355 0.1181 
MAE 0.0899 0.0978 0.1062 0.1080 0.0896 

R2 0.6644 0.6588 0.4048 0.5632 0.6679 
Test Time t/s 0.0116 0.0015 0.0074 0.0210 0.0010 

Compression Ratio comp 0.00% 31.04% 34.13% 0.00% 67.20% 
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regression results of D1 and D2, it can be seen that the 
fitting RMSE, MAE, and R2 of the MI-DSCN are the 
smallest, while the RMSE, MAE, and R2 of the 
MI-R-DSCN are similar to those of the MI-R-DSCN; 
the compression ratios comp of the MI-R-DSCN are 
34.67% and 33.53% higher than those of the MI-DSCN, 
and its test times are 72.31% and 53.85% shorter than 
those of the MI-DSCN on D1 and D2, respectively, 
indicating that the performance of the double pruning 
strategy is better than that of the single-pruning strategy. 
Comparing the fitting results obtained on datasets D3 
and D4, the evaluation indicators of the MI-R-DSCN are 
the best, and the evaluation indicators of BP are the 
worst. In summary, when the parameters are set rea-
sonably, the MI-R-DSCN can fit standard regression 
datasets well, and it does not cause a significant decrease 
in the fitting ability of the DSCN. Moreover, the 
MI-R-DSCN can also alleviate the overfitting pheno-
menon of the DSCN caused by unreasonable settings of 
the numbers of hidden layers and hidden nodes. 

5  Conclusion 

To solve the problem that DSCNs generate 
redundant hidden nodes and insignificance connections 
that can increase the network complexity, this paper 
proposes a double pruning MI-R-DSCN algorithm 
based on mutual information and correlation. The main 
contributions of this paper are as follows. 

First, a global weight pruning strategy based on 
relevance is proposed. The network weights and the 
influences between implicit nodes in adjacent layers are 
used as conditions for judging the importance levels of 
the connection weights, and the unimportant weights are 
reset to zero to realize the sparseness of DSCNs. 

Second, a double pruning method named the 
MI-R-DSCN is proposed based on mutual information 
and relevance. By dynamically obtaining the node 
pruning rate in a layer-by-layer manner, this method 
solves the problems of setting the same pruning rate for 
each hidden layer and ignoring the different amounts of 
information contained in each layer. In addition, the 
double pruning strategy can accurately screen and 
delete unimportant parameters in the DSCN, and the 
loss of model accuracy is small. This strategy solves 
the problem of overfitting caused by unreasonable 

hyperparameter settings and realizes compression and 
acceleration for the DSCN model. 

Although the MI-R-DSCN can reduce the required 
computation time, this method causes an excessive model 
accuracy loss when the pruning ratio is set unreasonably. 
In future research, we will consider incorporating the 
improved swarm intelligence algorithm into the 
MI-R-DSCN algorithm so that the population can find the 
best pruning ratio during the optimization process and 
further realize a lighter DSCN structure. 
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