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Abstract: With the increasing popularity of 3D sensors (e.g., Kinect) and light field cameras, technologies such

as driverless, smart home and virtual reality have become hot spots for engineering applications. As an important

part of 3D vision tasks, point cloud semantic segmentation has received a lot of attention from researchers. In this

work, we focus on realistically collected indoor point cloud data and propose a point cloud semantic segmenta-

tion method based on PAConv and SE_variant. The SE_variant module captures global perception from a broad

perspective of feature space by fusing different pooling methods, which fully utilize the channel information of

point clouds. The effectiveness of the method is verified by comparing with other methods on S3DIS and

ScanNetV2 semantic tagging benchmarks, and achieving 65.3% mloU in S3DIS, 47.6% mloU in ScanNetV2.

The results of the ablation experiments verify the effectiveness of the key modules and analyze how to use the

attention mechanism to improve the 3D semantic segmentation performance.
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1 Introduction

With the development and rise of artificial intel-
ligence technology, point cloud data analysis has
aroused widespread concern. Compared with images,
point cloud contains richer 3D spatial information, and
are not affected by external factors such as illumination
and perspective, so they can describe models more
accurately and comprehensively. As the key to scene
understanding, 3D point cloud segmentation is one of
the frontier research directions of artificial intelligence,
which has been widely used in the fields of smart cities,
robotics, unmanned driving, and laser remote sensing
measurement!'),

Point cloud segmentation methods include tradi-
tional point cloud segmentation and point cloud se-
mantic segmentation. The traditional segmentation

uses the location, shape and other information of the

point cloud to segment different region boundaries.
There are mainly edge-based, region-based and mod-
el-fitting-based segmentation methods. The segmenta-
tion results obtained by them do not contain any se-
mantic information, and requires manual semantic
annotation of the results, which is extremely inefficient
in the case of large data scales. Based on traditional
methods, point cloud semantic segmentation automat-
ically labels different types of objects in 3D space with
semantic labels of different categories, so that each
object has specific category information. At present, it
mainly uses deep learning as the implementation me-
thod, and the processing of point clouds mainly in-
cludes voxel-based, projection-based and point-based
method™.
Voxels are that divide the

three-dimensional space, similar to the pixels of im-

small squares

ages. In order to make the irregular structure orderly,
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researchers voxelize the 3D point cloud, and then based
on this structured "voxel" data to construct a 3D neural
network for segmentation. The projection-based me-
thods project point cloud data into 2D space, then uses
the neural network to segment the 2D feature image,
and finally maps the segmentation result back to the
point cloud. The point-based methods design a new
neural network to segment unstructured 3D point cloud
directly. The core idea of the voxelization and projec-
tion methods is to preprocess disordered point cloud
into a regular structure, which can be processed by the
traditional Convolutional Neural Network (CNN), but
both inevitably bring about the loss of point cloud
information. While point-based methods directly take
the original point cloud as the input of networks, so in
order to make full use of point cloud information, this
paper selects PointNet++°! as the baseline. We find
that although the Unit PointNet layer in Encoder uses
MLP to extract features better, it ignores the geometric
features of points. In addition, when extracting features,
shared weights are used for information with different
degrees of importance, and no distinction is made.
Therefore, this paper improves the above shortcomings
and proposes a new network.

The key contributions of this paper are as follows:

1) We propose a 3D point cloud semantic seg-
mentation based PAConv and SE variant, which
achieves 65.3% mloU in S3DIS and 47.6% mloU in
ScanNetV2.

2) We port the 2D attention module to the 3D
segmentation task and propose a SE_variant module to
improve the feature extraction performance by paying
more attention to the channel information.

3) We evaluate the performance of six attention
modules from 2D and 3D on S3DIS dataset. Then we
compare the effect and complexity of different atten-
tion mechanisms to verify the effectiveness of our
SE variant module, and provide some suggestions on
how to effectively use attention mechanism to improve

3D semantic segmentation performance.
2 Related Work

In this section, we introduce previous studies

about deep learning algorithms for point clouds.
2.1 Point-based Network

PointNet!*! proposed by Qi is the first one to di-
rectly uses the original point cloud as input for semantic
segmentation. It uses Multi-Layer Perception (MLP) to
calculate the features of point clouds and finally inte-
grates the global features through a max-pooling layer,
and proposes a T-Net introduced by PointNet is aim to
solve the problem - how to extracted a point cloud fea-
ture that invariant to rigid body transformation. Al-
though PointNet can get better segmentation results, it
still has the disadvantage of not being able to obtain
local features, which makes it difficult to analyze com-
plex scenes. Therefore, the author further proposed
PointNet++, drawing on the idea of multi-layer recep-
tive fields in CNN, and proposed a multi-level feature
extraction structure to iteratively extract features from
the area around each point, so as to solve the problem of
ignoring local features. Atzmon et al. proposed PCNN'!
to generalize image CNNs, allowing adjusting the net-
work structure, using expansion operators and constraint
operators to generate convolutions adapted to point
clouds. PointConv'® proposed by Wu et al. uses density
reweighting to efficiently calculate the weight function,
which significantly improves the effect. The Ran-
dLA-Net!”) proposed by Hu et al. uses random sampling
to solve the scale limitation, and introduces a Local
Spatial Encoding (LocSE) module. The LocSE learns
complex local structures by increasing the receptive
field, which can effectively preserve geometric features.
The PCT™ proposed by Guo et al. is based on the
Transformer module, which embeds the coordinates of
points into the feature space to generate new features,
then feeds them into the attention module to obtain
discriminative representations and learn the semantic

information of points.
2.2 Point Convolution Method

Compared with the 2D convolution on images, the
convolution method for 3D point clouds is difficult to
design due to the irregularity. In DensePoint!”, con-
volution is decomposed into two core steps: feature

transformation and feature aggregation, where feature
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transformation is realized through a shared Sin-
gle-Layer Perceptron (SLP), and feature aggregation is
(191 s the

position difference between the centre point and the

a symmetric function. The input of KPConv

adjacent point, and the definition field is a sphere with
radius 1, which has different weights in different areas.
The correlation in the kernel function adopts a simpler
linear correlation. In SpiderCNN!"Y, SpiderConv de-
fines convolution as the product of a simple step func-
tion and a Taylor polynomial. The step function obtains
rough geometry by encoding local geodesic distances,
and the Taylor polynomial obtains local geometric
changes by inserting arbitrary values on cube vertices.
PointCNN!"?! designed an MLP-based - Transforma-
tion, which also uses local regions to make full use of
spatial local correlation, and the specific input is do-
main points and related features. To improve segmen-
tation performance, we replace the MLP in each En-
coder with PAConv!'¥, which allows the network to

take full advantage of position information.
2.3 Attention Mechanism

The attention mechanism focuses on the infor-
mation that is more critical to the current task in the
input information, reduces the attention to other in-
formation, and even filters out irrelevant information,
which can solve the problem of information overload
and improve the efficiency and accuracy of the task. It
is widely used in deep neural networks to obtain new
feature maps by reweighting original features with
estimated attention maps. In image-related tasks, at-
tention maps can be generated from spatial or channel
information, while some methods combine both to
integrate information better. Furthermore, point cloud
neural networks tend to use the self-attention module,
which can calculate the long-term dependence without
considering the order of elements. In practice, we can
exploit the basic form of self-attention to compute
point relationships or channel associations in point
cloud analysis problems. However, related experiments
prove that the self-attention mechanism requires ex-
pensive computation, especially on large-scale point
cloud data, and spatial or channel attention modules

can be embedded into point cloud feature representa-

tion to achieve the same or even better results. At the
same time, it is found that for point cloud features,
channel information is more important with the least
increase in memory and number of parameters, so we
decide to introduce SE attention mechanism into the
network and propose a SE variant module to capture

more channel information.
3 Methodology

In this section, we will introduce the details of our
overall network structure. As shown in the top half of
Fig.1, the network consists of three major components:
Encoder, SE_variant module and Decoder.

3.1 Encoder

The Encoder is composed of Sampling layer,
Grouping layer and PAConv. The Sampling layer
chooses a group of points from the input to determine
the centers of local areas. The Grouping layer then
creates sets of local regions by finding points that are
"nearby" the centers. Finally, PAConv is used to en-
code each region to obtain feature vectors, which con-
structs the convolution kernel through dynamic data,
making full use of the location information of points.

1) Sampling layer: Like PointNet++, the Sam-
pling layer in Encoder as shown in the left bottom of
Fig.1 uses FPS (farthest point sampling) to sample
inputs. Given input points {Xi, X,, ..., X,}, it select a
subset of m center points {x;,, Xi,, ..., X;_}, s0 that x; is
the farthest point relative to other points in the set{x;,,
Xigy e Xijq}' Given the same number of centers, it

covers the entire point set better than random sampling.

2) Grouping layer: The Grouping layer divides
the point sets obtained in the Sampling layer into
several regions. The input is a set of points Nx(d+C)
and a set of coordinates N, X d of centers. The result is
a group of point sets NoxKx(d+C), where each group
represents a local region and K is the number of points
near the center point. It adopts the Boolean query
method to select K points within a given radius, where
the query distance is the metric distance, and K is
different in different local areas. Compared with

K-Nearest Neighbor (KNN) search, Boolean query keeps
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Fig.1 The Details of Qur Semantic Segmentation Network
(The upper part is the overall framework, the lower part is the detailed structure of encoder and decoder.)

local neighborhoods within a fixed region, making ' Weight =
local region features more generalizable in space. Bank
3) Position Adaptive Convolution: Position fce; ;’:Sl
Adaptive Convolution (PAConv) first defines a weight
bank consisting of weight matrices. ScoreNet then ’;”ﬁ’ j:’
learns a vector of coefficients based on point locations p]j.: _p: — S;]Zie fj
to combine weight matrices. Finally, the dynamic p,-;,..;v,- f,,
kernel is generated by combining the weight matrix P, Nx3 p.NXC,

and its associated position adaptation coefficients. The
resulting convolution kernel is applied to the input
features, and then the output features are obtained by
max pooling. The details are shown in Fig.2 and
elaborated below.

The weight bank B={B,lm=1, ..., M} is gener-
ated by where each

random initialization,

B, € R represents a weight matrix, and M
represents the number of matrices. Intuitively, a larger
M represents a more diverse weight matrix, but at the
same time, it will bring more memory usage and even

cause redundancy.

Fig.2 The Structure of Position Adaptive Convolution
Where SOP Means Symmetric Operations, like MAX, pjx
Represents the Different Neighbors of p;.

ScoreNet is responsible for correlating the rela-
tive positions of points with the weight matrix. Given
the positional relationship (p;, pj)ER3 between the

centre point p; and its adjacent point p;, ScoreNet pre-

dicts the positional adaptation coefficient Si| of By:

S, =a(6(;. p)) (1)

where 6 denotes MLP and a is the normalization op-
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eration implemented using the softmax function. The
ey M},

where S represents the coefficients of B, when

output is a normalized vector S;={S;' [m=1,

building the kernel K(p;, p;). The softmax function
guarantees that the value range of the coefficient is
between 0 and 1. This normalization makes sure that

each weight matrix is selected with a specific probability.

The larger the value, the stronger the relationship be-
tween the position input and the weight matrix.

The final kernel is derived by combining the
weight matrix from the weight bank with the positional
adaptation coefficients predicted by ScoreNet:

K(p.p) =D " (S'B,) ®)
PAConv constructs the convolution kernel through
dynamic data, generates adaptive coefficients Sg“ based

on the position information of points, and flexibly utilizes
the irregular geometric structure of 3D point clouds.

3.2 SE_variant Module

SE variant module is improved on Squeeze and Ex-
citation Network (SENet)". SENet is a plug-and-play
module proposed in 2017, which is widely used in the field
of computer vision. It makes full use of the channel
information of the features and adaptively complete the
recalibration of channel features by explicitly modeling
the interdependence between channels.

SE variant consists of Squeeze, Excitation and
Reweight. Squeeze compresses the features along the
spatial dimension of point clouds, and converts the
feature information into a real number, which has the
global receptive field of the channel. The output di-
mension is the same as the input feature. Adopting
different pooling methods means collecting feature
information from different angles. Therefore, in order
to effectively improve the performance of our network,
we decided to use average pooling and max pooling in
parallel to aggregate the input feature P;,, then generate
feature descriptors Py, and Py, for different angles.

P..e=AvgPool(P;,) 3)
Pa—=MaxPool(P;,) 4)

Excitation generates the required weight infor-

mation through the weight W, which is obtained through

learning and is used to model feature correlation. Since
it is not possible to use CNN directly on the point cloud,
we use the double hidden layer MLP with shared pa-
rameters to train the aggregated features. Finally, the

activation function ¢ is used to activate weights.
P, =o(L(3(L (P, )))+L(3(L(Pu))) ()

where o represents the sigmoid function, L represents
the Linear function, and § represents the Leaky ReLU
activation function.

During backpropagation, the Leaky ReLU func-
tion performs the gradient calculation for the part of the
input that is less than 0, instead of taking the value of 0
as in ReLU, which solves the problem of "death" of
neurons, as shown in Fig.3.

ReLU vs Leaky ReLU(a=0.05)

3.0+

25t

2.0

ReLU
~ — - Leaky_ReLU(a=0.05) | |

2 4 6

Fig.3 The Comparison of ReLU and Leaky_ ReLU
Function

In order to reduce complexity and improve
adaptability to different data, the first Linear function
reduces the input channel dimension to C/16, then
passes through the Leaky ReLU function, and the data
dimension is expanded to the same as the original input
by the second Linear function. Finally, the weight
values are normalized in the range (0, 1) using the
sigmoid function.

Reweight performs feature recalibration by multi-
plying the original features by the output of Excitation,
which represents the importance of feature channels.

P, =P, ®P, ©)
where P, is the new feature output by the SE_variant
module. The calculation process is shown in Fig.4.
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Fig.4 The Calculation Process of SE_variant

3.3 Decoder

As shown in the lower right of Fig.1, Decoder
first uses the interpolation method to restore the
original point cloud scale for Up sampling. According
to the coordinates of the center point, use the KNN

with K=3:
) K w.(x)P
PJ(X):ZHII( 1()1’Wi: 1
Zi-lwi(x) d(x, x;)

The Unit PointNet network is mainly composed

of a Transformation Network (T-Net) and a
Multi-Layer Perceptron (MLP). The transformation
matrix generated by T-Net is directly applied to the
coordinates of points. Specifically, two-dimensional
regularization is used, and in order to maintain the
rotation invariance of point clouds, an orthogonal ma-

trix is used as much as possible:
2
P, =[1-AA,] (8)

where P, is the transformed feature matrix, I is the
identity matrix with the same dimension as the input
matrix, and A is the feature matrix to be transformed.
The role of T-Net is to align features to make them

easier to extract.
3.4 Loss Function

The loss function in the network is calculated by
adding up the loss values of two parts:

L=LypreatLregu 9)
where L4 is the standard cross entropy function used
in PointNet++, and L., is a weight regularization
proposed in PAConv.

The weight matrix in PAConv is randomly ini-

tialized, so it may cause similar weight matrices, and
Leou is used to punish the correlation between different
matrices, defined as:

> BB

o L (10)
. ZB‘ BieB. i) IB, l, HBju2

This ensures that the weight matrix is distributed
differently, further guaranteeing the diversity of gen-

erated kernels.
4 Experiments

4.1 Experimental Settings

1) Datasets: To prove the efficiency of our ap-
proach, we run experiments on two popular 3D point
cloud datasets, which represent real point clouds in
different scenes.

S3DIS: Stanford large-scale 3D Indoor Spaces
(S3DIS)!™ dataset is collected from indoor environ-
ment and contains 271 rooms in 6 areas of three dif-
ferent buildings. It has 695878620 point clouds, each
with corresponding coordinates and colour information,
and semantic labels such as chair, table, floor, wall, etc.
in a total of 13 categories. We choose areas 1, 2, 3, 4,
and 6 for training and area 5 for testing. According to a
common protocol, the input points are sampled into
4096 uniform points during training and all points are
used for testing.

ScanNetV2: ScanNetV2!'®! dataset consists of
3D scenes of real indoor rooms, resulting in 2.5 mil-
lion views across over 1500 scans, annotated with 3D
surface reconstruction and in-

camera pose,

stance-level semantic segmentation. It samples point
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cloud data from reconstructed grid vertices, labels
each point from 20 semantic categories, and divides
them into 1201 training, 312 validation, and 100 test
scan scenes.

2) Training Settings & Evaluation Metrics: We
train the model for 150 epochs on a GeForce RTX
3090 GPU with a batch size of either 16 or 8. The
optimization algorithm is SGD with an initial
learning rate of 0.02 and divided by 10 at epoch 60
and 80. The momentum is set to 0.9 and the weight
decay is 107,

To evaluate the semantic segmentation perform-
ance of our network, we use mean intersec-
tion-over-union (mloU) as the evaluation metric, fol-

lowing the official guidance!'”’. It is the average value

of IoUs for all semantic classes across the entire dataset.

TP , where TP;, FP;,

IoU; is formulated as ————
TP, +FP, + FN,

FN; represent true positive, false positive, and false

negative predictions for class i.

4.2 Comparison about Different Attention
Module

To prove the effectiveness of our SE variant
module, we selected three 3D attention module and
three 2D attention module shown in Table 1 to replace
the SE_variant, then conduct experiments of different
attention modules on S3DIS dataset. As Table I indi-
cates, SE variant method achieves the best mloU
(65.3%) in all attention modules and exceeds the
method without any attention by 1%. For each category
of IoU, SE_variant method gets the highest values in
two of the ten categories. Point-attn''®], A-SCN"" and
Offset-attn are all composed of self-attention modules.
Compared with them, the simple structure of
SE variant or SE can help improve network perform-
ance more effectively. In addition, we find that channel
information is more important than spatial information
for point cloud features, as SE_variant and SE are more
effective than Non-local® and Convolutional Block
Attention Module (CBAM)!?!.

Fig.5 compares the two evaluation metrics (mloU
and oAcc) after adding different attention modules. It is

easy to find that although SE obtains the best value
under the metric of oAcc, the results of SE_variant and
CBAM are also good and not far behind. It is worth
noting that this metric is not a good measure of se-
mantic segmentation ability due to the unbalanced

nature of the classes??.

89.25 1 : +
A W/o attention
89.00 1 @ Point-attn A
88.75 - m A-SCN
Offset-attn

88.50 1 » Non-local *
g CBAM
< _
S 88251 oo

88.00 1 SE_variant

87751 *

87.50

(]

61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0
mlou

Fig.5 Overall Results (%) Testing on Area 5, S3DIS
dataset. (0Acc: overall accuracy)

Table 2 shows several metrics that can explain the
complexity. Because the parameter quantity of each
attention module is different, adding different modules
after each Encoder will also increase the whole net-
work size more or less. We can find SE variant not
only achieves the best results, but also increases the
number of parameters and FLOPs less. However, some
attentions, like Point-Attention, A-SCN and Off-
set-Attention require more computational resources
such as larger FLOPs. Moreover, the testing time of all
modules is at the same level.

From the experimental results, we find some
insights about using attention mechanism to improve
the semantic segmentation performance of 3D point
clouds. The self-attention module is not preferable for
3D point cloud data because of long-range depend-
encies and high computational resources. While the
compact modules like SE and our SE variant can
improve the effectiveness of 3D feature refinement.
Moreover, we find that when designing the attention
module for point cloud feature representation, the
performance of channel information is better than

spatial information.
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Table 1 Semantic Segmentation Results Testing on Area 5, S3DIS Dataset (w/o: without)

Ceiling Floor Wall Beam Column Window Door Table Chair

Sofa Bookcase Board Clutter mloU

Method
w/o Attention
_§ Point-attn!'®!
B
£ A-SCNI™
<
a Offset-attn®
Non-local?”
g
£  cBAMP!
L
< SEN4
@)
[\l
SE_variant

94.4
93.5

93.8

94.5

94.9

95.3

95.1

94.0

98.3 81.3 0.0

97.8

97.9

98.3

98.5

98.2

98.5

98.4

80.0

79.1

80.1

80.2

80.8

82.1

81.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

6.6
13.4

14.6

17.8

20.4

19.2

20.9

16.3

58.3
54.5

63.3

60.7

57.0

53.6

535

59.2

58.7 78.6 88.6 67.5 75.0 70.7 583 643
56.1 75.5 85.1 64.5 719 684 557 628
432 72.0 869 57.7 68.0 66.7 551 614
64.6 76.1 87.7 574 73.5 647 599 643
65.2 769 88.7 58.8 704 657 594 643
57.7 71.7 875 57.7 72.5 70.6 61.0 64.0
60.3 77.5 88.3 59.7 73.7  75.8 59.8  65.0
61.5 774 88.0 67.9 74.1 71.6  59.7 65.3

Table 2 Model Complexity of Different Attention Modules, Evaluated on S3DIS Dataset (Counted by The First
Attention Module in The Encoder)

FLOPs

Method Pa3rameters Parameters’ FLOPs’ Testing Time
(X107 / attention) Proportion (x10° /attention) Proportion (s/task)

£ Point-attn'"" 5.440 0.044% 5652.480 0.180% 4.7

2 j’% A-SCN!?! 5.440 0.044% 5652.480 0.180% 4.6
2 Offsct-attn® 9.632 0.077% 10010.624 0.317% 4.8
- Non-local?” 2.400 0.020% 2547.712 0.081% 4.6

A % CBAM[PY 1.028 0.009% 138.256 0.004% 4.6
o % SE 1.024 0.009% 66.568 0.002% 4.7
SE_variant 1.024 0.009% 133.136 0.004% 4.8

4.3 Ablation Studies about Pooling Method in

SE_variant

To verify the effectiveness of the proposed pooling
method, we design several variants of the SE variant
module to investigate the effect of max-pooling and

avg-pooling methods as shown in Table 3.

Table 3 Ablation Studies about Pooling Methods Testing
on Area 5, S3DIS Dataset

) SE variant
Baseline PAConv - mloU
Max Avg
N N 64.3
v v v 64.4
Y \ \ 65.0
S \ \ \ 65.3

We found that only using max-pooling or
avg-pooling method can achieve 0.1% or 0.7% gain in

term of mloU, but using both pooling methods further
boosts the performance with 0.3%. Based on the ad-
vantages of local max and mean features, we conclude
that the best form of SE_variant module is using mixed
local aggregation.

4.4 Ablation Studies about Effects of Net-

work Components

In this section, we make several variants of our
model to verify the contributions of different compo-
nents as shown in Table 4. Baseline method represents
the PointNet++ network. It can be observed that
PAConv based on position information of points pro-
vides effective global context features, improving by
7.7%. SE_variant module promotes performance based
on channel information, about 1.1%. In the end, the best
value of mloU is achieved by introducing both parts at
the same time. These demonstrates that both PAConv
and SE_variant module is crucial in the proposed method.
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Table 4 Ablation Studies about Network Components
Testing on Area 5, S3dis Dataset

Baseline PAConv SE variant mloU
V 56.6
v V 57.7
v v 64.3
v v 65.3

4.5 Semantic Segmentation Results and Vi-

sualization

1) S3DIS: Table 5 shows the performance com-
parison of our network with other state-of-the-art
methods on the S3DIS dataset under the same experi-
mental environment configuration. Notably, we sig-

nificantly outperform the competitors regarding mloU

(65.3%), improved by 8.7% over the baseline network
(PointNet++), and reach the best IoU in categories
ceiling, chair, bookcase and board. Moreover, we visu-
alize the segmentation results of baseline and our net-
work for three scenes in S3DIS dataset as shown in Fig.6,
including conference room, lobby and office. It is ob-
vious that the segmentation effect of our network in red
box has been significantly improved. For example, in
the first row, our ceiling segmentation result is much
better than baseline, as are the board in the second row
and the bookcase in the third row.

2) ScanNetV2: We also conduct contrast experi-
ments on ScanNetV2 dataset with other method as shown
in Table 6. We surpass other methods in five out of the
twenty categories. In particular, we perform well on small
objects such as chair, table and shower, the visualization of
semantic segmentation results is shown in Fig.7. We can

Table 5 Comparison with the Typical Streams of Methods Testing on EreaS, S3DIS Dataset

Method Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter mloU
PointNet!¥ 88.2 97.7 72.6 0.0 7.1 51.5 202 57.7 43.1 99 463  33.8 332 438
PointNet++! 92.1 979 784 0.0  19.8 56.1 29.8 71.7 79.7 344 673 59.8 489 56.6
PointCNN['Z 923 982 794 00 176 22.8 62.1 744 80.6 31.7 66.7 62.1 56.7 573
SCF-Net!?¥ 91.5 95.7 80.8 0.0 16.6 61.5 354 752 88.0 67.1 70.6 658 519 61.5
BAAF-Net??? 91.9 969 83.0 0.0 264 61.0 60.4 793 87.4 60.0 70.1 654 535 643
KPConvl!¥ 93.9 98.5 819 0.0 16.7 51.8  71.7 909 81.0 75.6 59.3 62.0 60.8 65.1

Ours 94.0 984 81.0 00 163 592 615 774 88.0 679 741  71.6 59.7 65.3

Table 6 Comparison with the Typical Streams of Methods on ScanNetV2 Dataset

3 2 o B 2, t 5 o
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PointNet++*' 523 67.7 25.6 47.8 36.0 34.6 23.226.1252 458 11.7 25.027.824.721.114.5 54.8 36.4 58.4 183 33.9
SPLATNet® 69.9 92.7 31.1 51.1 65.6 51.0 383 19.726.7 60.6 0.0 24.532.840.5 0.1 24.9 59.3 27.1 47.2 22.739.3
TangentConv®® 633 91.8 369 64.6 64.5 56.2 42.727.9352 474 147 353 282258283294 61.9 48.7 43.7 29.8 438
3DMVP! 602 79.6 42.4 53.8 60.6 50.7 413 37.853.9 64.3 21.4 31.0 43.3 57.4 53.720.8 69.3 47.2 48.4 30.1 48.4
Ours 69.8 93.0 422 59.5 724 533 554325395 63.5 113 44.739.539.3 22.534.9 63.5 33.5 54.6 27.6 47.6
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Input Ground-truth Baseline Ours

Fig.6 Visualization of Semantic Segmentation Results for Three Scenes in S3DIS Dataset

Input Ground-truth Baseline Ours

Fig.7 Visualization of Semantic Segmentation Results for Three Scenes in ScanNetV2 Dataset
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see that our door segmentation result in the first row is
better than baseline, as are the wall in the second row
and the chair in the third row. The excellent results can

be attributed to our SE variant module, which thor-

oughly considers relevant information between channels.

In general, compared with the baseline, our network has
improved 13.7% mloU, but it is slightly behind
3DMV™,

5 Conclusion

In this paper, we propose a 3D point cloud semantic
segmentation based PAConv and SE_variant. PAConv
constructs the convolution kernel through dynamic data,
generates adaptive coefficients based on the position
information of points, and flexibly utilizes the irregular
geometric structure of 3D point clouds. SE variant
module we proposed makes full use of the channel in-
formation of point clouds by fusing different pooling
methods, capturing the global perception from a broad
perspective in feature space. We conduct extensive ex-
periments and ablation studies to validate the effec-
tiveness of the method, achieve 65.3% mloU in S3DIS
and 47.6% mloU in ScanNetV2. In addition, we provide
some suggestions for understanding the attention
mechanisms of 3D point cloud semantic segmentation
by comparing the complexity and effect of different

attention modules.
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