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Abstract : Many animals possess actively movable tactile sensors in their heads, to explore the near-range space. During locomo-
tion, an antenna is used in near range orientation, for example, in detecting, localizing, probing, and negotiating obstacles. A
bionic tactile sensor used in the present work was inspired by the antenna of the stick insects. The sensor is able to detect an obsta-
cle and its location in 3D ( Three dimensional) space. The vibration signals are analyzed in the frequency domain using Fast Fou-
rier Transform (FFT) to estimate the distances. Signal processing algorithms, Artificial Neural Network ( ANN) and Support
Vector Machine (SVM) are used for the analysis and prediction processes. These three prediction techniques are compared for
both distance estimation and material classification processes. When estimating the distances, the accuracy of estimation is deterio-
rated towards the tip of the probe due to the change in the vibration modes. Since the vibration data within that region have high
a variance, the accuracy in distance estimation and material classification are lower towards the tip. The change in vibration mode
is mathematically analyzed and a solution is proposed to estimate the distance along the full range of the probe.
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bration modes, Euler-Bernoulli beam element.

1 Introduction

Walking animals are fully autonomous creatures
of the nature and are highly adaptive in object detec-
tion and localization using their sensitive sensors.
Tactile sensors are used as near range sensing ele-
ments by most animals, and the information through
physical interaction with their near range environ-
ment is measured ( Diirr, et al., 2007).

Many animals like rats and cats use active
whisker movements to detect and scan objects in the
vicinity of the body, and insects like honey bee (A-
pis mellifera) and crustaceans use antenna for obsta-
cle localization, orientation and pattern recognition
(Krause, et al., 2014). Unlike vision, direct tactile
sampling of an object allows feeling of object prop-
erties such as chemical properties, temperature, tex-
ture, and humidity. In most cases, these properties
provide important measurements, and they are hard

to identify using intangible sensors. Since the tactile

sensor used here does not depend on lighting condi-
tions, it works under any lighting conditions and the
readings will not be affected by the light intensity. It
is useful to analyze the properties of tactile sensors
and apply them in robotics, just as they play a major
role in the animal kingdom.

In the present paper, a bionic active tactile sen-
sor inspired by the antenna of the Indian stick insect,
Carausius morosus is used ( Diirr, et al., 2007 ; Ho-
inville, et al., 2014). It consists of an acceleration
sensor mounted on the tip of the probe, which is ca-
pable of near-range tactile localization and predicting
the contact distances up to an accuracy level of 0.5
cm, using an ANN (Hoinville, et al., 2014). The
contact distance is mainly determined by using the
dominant frequency of the damped oscillations of the
probe, and the damping properties are used for ma-
terial classification The existing methods are able to

estimate the contact distances and material classifica-
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tion along 75% of the probe length, where one half
of the problematic range contains the most distal sites
( Diirr, et al., 2007; Patane, et al., 2012). A de-
tailed discussion of the reasons behind this abnormal
behavior of the vibration pattern of the final quarter
of the antenna is not found in the literature.

The initial study of the present work has fo-
cused on identifying the possible causes for the chan-
ges of the vibration patterns of the final quarter of
the antenna, by using mathematical analysis based
on the Euler-Bernoulli beam element model of the
antenna probe. During this analysis, a suitable meth-
od to use the full range of the antenna probe is sug-
gested. Even though the Artificial Neural Network
(ANN) is a powerful machine learning approach, it
has many drawbacks; for example, there is no
standard method to determine and optimize the struc-
ture of the network and also ANNs are computation-
ally expensive for training and testing. In the present
work, ANNs are used for comparison purposes as
they have been used in other studies ( Hellbach, et
al., 2010; Patane, et al., 2012). Another machine
learning technique called Support Vector Machines
(SVM), which can give solutions to most of the
mentioned drawbacks ( Bisgin, et al., 2018; Ren,
2012) is used as the primary approach. A comparison
between the results, observed from ANN, SVM and

basic signal processing algorithms, are presented.

2 Methodology
The active tactile sensor consists of an acrylic
fiber antenna probe with an accelerometer that is

mounted on the tip of the antenna.

2.1 Distance Estimation

The typical acceleration sensor provides acceler-
ation readings of the tip of the antenna, in two or-
thogonal directions X and Z. The second norm of the
X and Z components is taken as the total acceleration

of the antenna tip:

Resultant Acceleration = /X* + Z° (1)
The vibration pattern of the antenna tip at a dis-

tance 17 cm from the hinge point of a brass rod is

shown in Fig.1.
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Fig. 1 Vibration signal using MPU6050 sensor when

object was at 17cm away from the hinge point.

According to previous research in this area
( Diirr, et al., 2007; Patane, et al., 2012) it is dif-
ficult to identify the small consecutive distances by
using time domain techniques. Therefore, in the
present work, frequency domain techniques are used
to estimate the contact distances from the hinge point
(Volker, no date). The time domain signals of the
X and Z axis are converted to the frequency domain
by taking their FFT and the norm is calculated ac-
cording to (1). The norm of the two FFT spectrums
is shown in Fig.2. The dominant frequency compo-
nent of the FFT spectrum is identified as the feature
to estimate the contact location ( Patane, et al.,
2012; Harischandra & Diirr, 2012). Initially, the
antenna length is taken as 40 cm and a data set is
collected for five different materials ( Aluminum,
Brass, Wood, Steel and PVC) as the objects. The
dominant frequency method is applied to all the da-
ta, collected using the five materials. Although a lin-
ear variation has been observed initially, a deviation
from the linear variation is observed at 29.5 cm away
from the hinge point. Therefore, the data set is sta-
tistically analyzed, providing the standard deviation
and the variance. The variation of the standard devia-
tion and the variance is shown in Fig.3. According to

the box plot graph in Fig.3, a high variation of the
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dominant frequency near 30 cm is observed. This
variation may be due to reasons such as the contact
point might be near a changing point of the vibration
mode, more noise may enter the readings due to the
contact point being very close to the sensor, and the
limitations in the sampling frequency. For further in-
vestigation, the antenna probe length is increased to
50cm from 40cm, and the same procedure is fol-
lowed. In this situation also, a similar variation oc-

curs at 39.5cm away from the hinge point.

2.2 Mathematical Analysis of the Probe

Beam members are widely used the basic struc-
tural components in mechanical, aeronautical, auto-
mobile and civil engineering fields. Therefore, ef-
forts have gone into their static and dynamic analyses.

In the Bernoulli-Euler theory, the shear deformation

due to bending is neglected (De Silva, 2007) in the
formulation of the spectral and finite element meth-
ods (Hamioud & Khalfallah, 2016).
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Fig. 2 FFT norm spectrum 17cm away

from the hinge point.
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With the aim of analyzing the variation beyond
80 % length of the probe, a vibration modal analysis
is carried out. The probe is numerically modelled u-
sing planer Euler-Bernoulli (E-B) beam elements.
An E-B beam element has two nodes per element
and each node has two degrees of freedom ( DOF) ,
as shown in Fig 4. These degrees of freedom are ar-
ranged as [ v, , v, , 0, , 6, ], where v, , v, are the

translational DOFs and 6, , 6, are the rotational

DOFs. With respect to the 2D (two dimensional )
global coordinates system, the stiffness matrix of the
E-B beam element is given by the matrix K and the
consistent mass matrix of the E-B beam element is
given by matrix M [8] .
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where,
E = Young’ s modulus of the material (N/m?*)
I = moment of inertia of the beam (kg/m®)
L = length of the beam (m)
p = mass density of the beam (kg/m”)
A = area of the cross section (m”)
The associated eigenvalue problem is ( De Sil-
va, 2007)
[K-0’M][D] =[0] (2)
where ,
o= natural frequencies of the beam
) = mode shape vectors
Two frequencies of the vibration modes are ob-
tained for nontrivial solution of (2), given by, det
(1K - @M |) = 0. By substituting the resulting two
o values into (2), the vibration mode shapes of the
structure can be obtained from the eigenvector .
The antenna probe used here is modeled with
two E-B elements, as shown in Fig.5. Since the an-

tenna probe is in the horizontal plane, element local

coordinate and global coordinate systems coincide,
and the rotational transformation matrix becomes the
identity matrix. If the local and global coordinate
systems do not coincide, K and M should be multi-
plied with a rotational transformation matrix. As the
antenna probe model has two E-B elements, in order
to get the structural stiffness matrix K1 and the struc-
tural mass matrix M1, the K and M matrices of both

elements should be assembled.

Fig. 4 Euler-Bernoulli beam element.
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Fig. 5 The structural model of the antenna probe.
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where , [, = length of 2nd E-B element
v, , v,,v; = translational DOF P = hinge point
0,,0,,0, = rotational DOF Q = object’s contact point
[, = length of 1st E-B element R = free end
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After combining the matrices K and M, (2) is
modified as,
[Kl -w*M1][J] = [0] (3)
The most flexible mode is the dominant mode
and its frequency is considered as the dominant fre-
quency of the structure. Vibration modes at every
contact point could be obtained by changing the val-
ues of /, and [, . By taking /, as 0.25L , 0.5 L , 0.75
L,0.8L, and 0.9 L, the system is solved numeri-
cally. Then the mode shapes are obtained using the
eigenvectors (), and most flexible mode shape is an-
alyzed. As the verification process of the mathemati-
cal analysis, the vibration signal is analyzed using
wavelet transform. Since the FFT failed to give time
resolution of the signal, it is impossible to identify
the mode of vibration changes in the antenna element
using the FFT. But the wavelet transform is able to
provide a clear idea about time and frequency.
Therefore the norm vibration signal of the antenna
beam is analyzed using wavelet transform at the
same distances as those used in the numerical analy-
sis. Then it can clearly verify the mode changes of

the antenna beam.

2.3 Material Classification

Apart from the distance measurements, the sen-
sor feelers are able to classify the properties of the
contact object ( Hellbach, et al., 2010; Patane, et
al., 2012). Tactile sensor reads the acceleration data
after a small impact with the object material, and the
antenna gives energy to the contact object. Accord-
ing to energy conservation, the given energy should
be absorbed by the antenna itself and transferred to
the contact object. Since the amount of absorbed en-
ergy depends on the contact object’ s material prop-
erties, the rest of the energy is absorbed by the an-
tenna probe, and should depend on the material
(law of energy conservation) of contact objects.
Since the surrounding environment remains constant,
the performance of the damping time depends only
on the characteristics of the contact material.

Using this concept, the damping time for five

different materials are calculated. The time domain

norm signal of the X and Z axes is taken for the ma-
terial classification process up to 80% length of the
antenna. As the vibration signal contains noise, it is
pre-filtered using a Chebyshev second order band
pass filter. After that, a damping time constant is
calculated by fitting a general exponential model to
the vibration signal using MATLAB signal process-
ing toolbox ;
F(x) =ae™ (4)
where 7 = 1/b is the time constant and a is the
gain.
Since vibration details for 25 contacts are taken
for all contact distances, 25 time constants are calcu-
lated for one contact distance, and they are aver-

aged.
2.4 Classification Techniques

2.4.1 Artificial Neural Network ( ANN)
AnArtificial Neural network (ANN) is a com-
putational model that is inspired by the biological
neural network in the human brain. The feed forward
neural network was the first and the simplest type of
ANN ( Karray and de Silva, 2004 ). It consists of
multiple neurons arranged in layers. Nodes from ad-
jacent layers have connections or edges between
them. These connections have weights associated
with them. A multilayer perceptron (MLP) is a col-
lection of multiple hidden layers apart from the input
and output layer. With the help of nonlinear activa-
tion functions like sigmoid and tanh, an MLP is able
to build a nonlinear relationship between the features
and the target, for either classification or regression.
The ANN has many advantages; for example, after
ANN training, the data may produce useful outputs
even with incomplete information; parallel process-
ing capabilities; and learning events and making de-
cisions by commenting on similar events. It has some
significant drawbacks as well; for example, inade-
quate theoretical backing; back-propagation usually
converges only to locally optimal solutions; and the
behavior of the network cannot be explained after the

model is created. Despite the drawbacks, it is used
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here to benchmark the classification process.

2.4.2  Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a super-
vised machine learning technique, and is applicable
in both classification and regression problems. The
algorithm used in the SVM creates a hyperplane in
high dimensional space, which separates the classes
in a classification problem. The separating hyper-
plane is optimized by maximizing the distance of ei-
ther class to the separating hyperplane and minimi-
zing the risk of misclassifying the training samples
and unseen test samples. The kernel methods consist
of a kernel function. These functions map the nonlin-
ear separable input space into a higher dimensional
linear separable feature space. In the new higher di-
mensional linear separable feature space, SVM can
perform as a general SVM. In SVM regression, the
input data set is first mapped onto an m-dimensional
feature space using a fixed ( nonlinear) mapping,
and then a linear model is constructed in this feature
space. SVM is able to find the optimal separation hy-
perplane, and therefore the accuracy of this model is
higher than with other classification models like
ANN and K-means. Also, it can deal with very high

dimensional data.

3 Experimental Verification

Antenna probe should bea structure, similar to a

. /'4—

beam, that is vibration sensitive and compliant but
also sufficiently stiff to maintain its shape during
self-vibration, The antenna beam should be suffi-
ciently soft, so as not to damage the obstacle, as a
small impact is given to the obstacle while detecting
the obstacles and collecting data ( Patane, et al.,
2012). To achieve these properties, an acrylic fiber
tube of 0.8 cm outer diameter, 0.6 cm inner diame-
ter, and 40 cm length is selected as the antenna tube
(Sayed, 2015).

An accelerometer ( MPU6050) is mounted at
the tip of the antenna to collect the vibration data.
Since the Y axis is along the antenna axis itself, it
does not provide any significant data. Therefore, on-
ly the X axis and the Z axis data are used in the cal-

™3 control board is used as

culations. A Raspberry Pi
the brain of the system and Python 3.0 is used as the
programming language. The maximum sensitivity of
the sensor is +/- 16g (g = 9.81 ms-2), and 12C
communication protocol is used to communicate with
the Raspberry Pi 3 microcontroller board ( Electron-
icWings, 2018). The sampling frequency of the data
acquisition is set as 1 kHz to capture all frequencies
of vibration up to 512 Hz. Since the maximum data
transferring rate of the sensor via I°C is 400 kHz, it
is easy to achieve this sampling rate. A Kalman filter
is used to filter out the noise in the vibration signal
from the sensor (De Silva, 2017).

Bionic sensing antenna.

Contact .
Object.

Main
Controlling

unit .

Fig. 6 The hardware setup: Basic module placement of the hardware,

L indicate the distance measure from the hinge point.
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The antenna probe is mounted on a pan-tilt unit.
The following specifications have been considered in
designing the pan-tilt unit. The antenna should move
in an elliptical path to resemble the searching behav-
ior of an insect and the antenna (motors) should be
stopped immediately after detecting an object. A
graph of the antennal movement generated +from a
3D simulation using a polar coordinate system is

shown in Fig 7.
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Fig. 7 Animated result for the 3D simulation.
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Fig. 8 Block diagram of the control algorithm.

The servo motors, used for the pan-tilt unit
should have sufficient torque to bare the 40cm length
antenna. Therefore, metal gear MG996R high torque

servo motors are used. PCA9685 16 channel servo

control unit is connected to the Raspberry pi 3 con-
trol board to control the servo motors. Data acquisi-
tion setup of the system is shown in Fig 6. The con-
trol algorithm of the pan-tilt is based on the block di-

agram in Fig 8.
4 Discussion

4.1 Results from Signal Processing for Distance

Estimation and Material Classification

4.1.1 Distance Estimation

Here a unique feature is found to identify the
contact distance from the robot. The feature, fre-
quency of the maximum amplitude frequency com-
ponent, does not change according to the material
and it is dependent only on the contact distance. The
resultant plots for the different materials are shown in
Fig 9. Although a linear variation behavior is ob-
served for all five materials, a deviation from that
linear behavior could be observed at 29.5 cm away
from the hinge point of the antenna. After increasing
the length of the antenna to 50 cm, a similar devia-
tion could be observed at 39.5cm away from the
hinge point. The standard deviation of the sensor
readings for both cases are shown in Fig 10, and it is
seen that this variation occurs at 80% of the antenna
length away from the hinge point. Therefore, 40 cm
is selected as the antenna length and 80% from that

length is selected for further predictions.
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Fig. 9 Variation of the contact distances Vs Log scale

of the dominant frequency for the five different materials
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Fig. 10 Variation of the standard deviation Vs contact distance from the hinge point (a) probe length 40 cm (b) probe.

4.1.2 Material Classification

From the figures it is observed that the separa-
tion of the materials varies with the frequency band.
Therefore, randomly selected frequency bands are
used to select the best separable frequency band, and
most of the times good classifications have been ob-
tained at the high frequency band.

In the high frequency band, pass band cutoff
frequencies are set in the range of 100 Hz- 200 Hz.
The time constant varied with the selected band pass
cutoff frequencies. After applying several frequency

ranges, one range has been selected due to the grea-
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ter separations it showed than the others. The result-
ant graphs of the gain and time constant for that par-
ticular range are shown in Fig.11. As seen from Fig.
11, a clear variation can be obtained in the 0 - 80%
range of the antenna in this frequency band. But here
an overlap is observed between PVC and WOOD at
26 cm away from the hinge point. The optimum fil-
ter characteristics are given in Table I. As the materi-
al separation depends on the frequency band, if the
characteristics in Table I are changed, the behavior

of the separation will not achieve the optimum sepa-

ration.
70 v_,“.‘,g.rﬂ*ﬁrrnfn.-
+ AL o
Cu &
60 PVC ex
Wood 4‘.’::“
Steel Y- o
£ 50 -~ F
8
17}
c
O
O 40
o
E
S
o 30
o
©
o
>
<20
10
0
0 5 10 15 20 25 30

Distance from the hinge point(cm)

(®)-

Fig. 11 Variation of the (a) Gain (b) Time constant over the contact distance for five materials.
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Table 1 Chebyshev Filter Characteristics.

Sampling Frequency Fs 1000

Nyquist Frequency Fn Fs/2
Normalized Passband Wp [60 160 ]/Fn
Normalized Stopband Ws [55 165]/Fn
Passband Ripple (dB) Rp 1
Stopband Ripple (dB Rs 30

4.2 Results from ANN

When implementing the ANN, it is trained u-
sing the MATLAB toolbox for simulations ( Beale,
et al., 2010). For the real-time implementation, py-
thon 3.0 and tensor flow open source library are
used. All the training and testing processes are per-
formed on a computer with Intel (R) 8 Series
Chipset processor, 4.00GB RAM, 64-bit operating
system, and X 64-based processor. Also, Google
cloud platform is used for fast computation and train-
ing, in real-time implementation. For classification
and distance estimation tasks, two different kinds of
ANN models have been tested. The training, testing
and validation datasets are created by the magnitude
values of the FFT frequency spectrum (256 compo-
nents). The dataset is created for all five materials
by changing the contact distance along the antenna in
5 mm steps, and for each contact point, 25 samples
are taken. The full dataset is split as 70% for train-
ing, and 15% each for testing and validation. The
full dataset is normalized (by dividing by the maxi-
mum magnitude of the frequency component) , and
no dimension reduction method is used. For the ma-
terial classification, different Neural network topolo-
gies have been tested to find the optimum one. The
training algorithms, activation functions, the number
of hidden layers and the number of neurons per hid-
den layer have been changed, and the model has
been optimized in order to realize a model with high
performance. The optimum result is generated by a
single hidden layer with 53 neurons. The training al-
gorithm is gradient descent, and the activation func-

tion is tanh. The overall confusion plot for the opti-

mum model in the material classification task is

shown in Fig.12.

808 58 22 52 20 | 84.2% | Alumi-
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0.7% | 1.8% | 1.2% | 14.5% | 0.9% | 23.9%

21 43 70 55 757 | 80.0% | Steel
0.5% | 1.0% | 1.6% | 1.2% | 17.0% | 20.0%
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10.8% | 24.4% | 20.1% | 25.3% | 15.5% | 19.2%

Alumi- PVC Brass Wood Steel
num

Fig. 12 Confusion matrix.

The diagonal elements of the confusion plot
give the correctly classified number of material for
the entire training and testing dataset. The average o-
verall accuracy for material classification is 80.8%.
The percentage value shown in each cell of the ma-
trix is the detected number of samples from the full
dataset. The proposed material classification method
is extended to contact distance estimation from the
hinge point. A regression type neural network is used
in order to predict the contact distance. To train the
regression model, the same dataset as in the material
classification task, is used. From the signal process-
ing observation, it is concluded that towards the tip
of the antenna, the nonlinear behavior becomes
dominant. Therefore in order to train the regression
model, only the linear behavior dataset ( approxi-
mately 80% from the full antenna length) is used.
The best result for the distance prediction is provided
by 2 hidden layers with 20 neurons per layer. The
training algorithm is gradient descent and tanh func-
tion is the activation function. Fig.13 shows the opti-
mum model performance.

Earlier studies show that the nonlinear behavior
of the distance measurement towards the tip of the
antenna is a significant issue. Therefore, those stud-

ies limited up to 75% ( Volker, no date) of the con-
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tact distance from the hinge point. In the present
study, this behavior is modeled along the antenna.
Therefore in order to predict the contact distance in
the nonlinear region, a special neural network was
trained, providing better performances. Key features
of this network are that the dataset is normalized by
the min-max normalization method, and the use of a
prepossessing stage before feeding to the neural net-
work. In order to remove power line hum and noise,
a second order elliptical filter is applied to the data-
set. The performance of the filter is improved
through experimenting. The optimum filter character-

istics are shown in Table 2.
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Fig. 13 Optimum model performances.

Table 2 Elliptical Filter Characteristics.

Fs 1000 Sampling Frequency
Fn Fs/2 Nyquist Frequency

Wp [52 325]/Fn Normalized Passband
Ws [48 330]/Fn Normalized Stopband
Rp 1 Passband Ripple (dB)
Rs 45 Stopband Ripple (dB

The normalized dataset is split into training,
testing, and validation sets at percentage values

70% , 15% , and 15% , respectively. Several models

are trained and the optimum model is achieved by
hyper parameter tuning. The specifications of the op-
timum model are the following. Scaled conjugate
gradient algorithm is used as the training algorithm,
and a single hidden layer consisting 9 hidden neurons
is used. Rectified linear unit (ReLU) is selected as
the activation function of the model. Fig.14 shows

the performance of the optimum model.
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Fig. 14 Performance of the optimum model.

4.3 Results from SVM

Several recent studies have shown that SVM can
provide a better performance in classification than
with other classifiers ( Byvatov, et al., 2003; Sin-
gla, etal., 2011). A key factor in using SVM in the
present work is that it decides the decision boundary
of the classes in order to maximize the gap between
classes. For a fair comparison, the training and tes-
ting processes of SVM are done using the same data-
set that is used for the classification by ANN. In
SVM, for a single sample of data, there are 256
(' magnitude of frequency components) features as in
ANN. Initially, in training the SVM model, a linear
SVM was used, which was unable to obtain a well
performing model. Subsequently, the kernel was

changed in order to improve the performance on the
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dataset (nonlinearly separable data) .

A different approach is used to form the linear
SVM by solving the dual of the optimization prob-
lem. The dual for the linear SVM problem is given

by,
maxlg1 bi-%; ; ¥, bi(xi.xj) ¥ bj (5)
where,
2‘1 b.y, = Oand0 <b, S;Ty (6)
Here the b vector is a variable and it will only
have the values +1 and -1. The input data points are
visualized in x; and the targets are in y, . The men-
tioned kernel is the x,. x; and it is a linear kernel.
Rather than using the dot product, a more complicat-
ed function is introduced. Specifically, the Gaussian
kernel (radian basis kernel) is used, as given by,
w5, (7)
Al

k(x,x;) = exp (-y |

Brass

PVC

Steel

0
Al Brass
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Fig. 15 Confusion plot for the optimum SVM model.

Here, |- is the square of the Euclidean
distance between the feature vectors and the Gamma
value is changed accordingly (Nanda, et al., 2018;
Nahar, et al., 2007). The optimum model was ob-
tained for 2.0 gamma values and with 50 iterations in
training the model. In training the SVM model we
use one vs all strategy, and the gradient descent op-
timizer as the training algorithm. The batch size is
selected as 6000 samples and 80% of it is used as the

training dataset, and the remaining 20% as the tes-

ting dataset. Fig.15 shows the confusion plot in ma-
terial classification using SVM. Here white color re-
fers to training results and red color refers to testing
results. The accuracy for training and testing is
99.7% and 99.2% , respectively. The SVM method
gives a better performance than with the signal pro-
cessing technique and artificial neural network in ac-

curacy as well as in computational cost.

4.4 Experimental Verification of Vibration Mode

Change

The dominant vibration modes are obtained
from the numerical solution of the mathematical
model. When contact point is moved from the hinge
point to the tip, the shape of the dominant vibration
mode also varies. Therefore, a change in the domi-
nant vibration mode should happen as well. In Fig.
16, three zones can be identified in the frequency
variation. Initially, it has a very slight variation with
a llow gradient. But when moving towards the anten-
na tip, the gradient of the linear variation increases.
As the contact object is very close to the hinge
point, the beam element between the hinge point and
the contact point shows a high stiffness and the rest
of the beam element behaves like a cantilever ( see
Fig.17(a) ). But when the contact point moves to-
wards the antenna tip, as in Fig.17 (c¢), the cantile-
ver action becomes stiffer. Therefore the antenna ele-
ment between the contact point and the hinge point
becomes more flexible and again a slight variation is
observed but it is different from the initial variation,
as shown in the Fig 16 Zone 3. When the contact
distance is between these two cases, a transition of
the modes is observed, as in Fig 17 (b). The vibra-
tion mode is changed in the range of Zone 2 ( see
Fig 16). Hence, at the 80% of the total antenna
length, the mode of vibration is entirely changed.
This change in mode of vibration is the main reason
for the deviation from the linear variation, obtained

in the signal processing algorithm.
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In signal processing a spectrum shows the fre-
quency content of an entire signal. It is a 1-dimen-
sional function of amplitude versus frequency where-
as a spectrogram shows how the frequency content of
a signal changes over time. It is a graph with two di-
mensions; frequency (vertical axis) and time ( hori-
zontal axis). The third dimension is the amplitude of
a particular frequency at a particular time, which is
represented by the intensity of each point in the im-
age/graph. Spectrograms are constructed by breaking
the time domain data into a series of chunks and tak-
ing the FFT and then overlapping these FFTs with
one another so that one can visualize how both am-
plitude and frequency of the signal changes with

time. Spectrograms are constructed for experimental-

ly obtained vibration signals ( norm) at different
contact lengths.

These spectrograms of vibration signals are used
to verify the numerical solutions of the mathematical
model, i.e., the existence of multiple vibration
modes when a contact happen towards the tip of the
antennal probe. The results, obtained using wavelet
spectrogram for the 0.25L , 0.5L , 0.75L , 0.8L and
0.9L of the antenna length are discussed now. Ac-
cording to the results obtained from the mathematical
model, a total vibration mode change occurs at 0.8L
. Fig.18 shows the spectrogram of the vibration sig-
nal at 0.25L and 0.5L . Both of these points are laid
on the linear region of Fig 16. The dc component is
laid at 0.0 of the frequency axis. Even though it has
some powerful frequency components in the begin-
ning, the most powerful frequency component for
the 0.25L is between 0.05-0.1 in the normalized fre-
quency, and it is between 0.1-0.15 for the 0.5L.
Both these frequency components remain powerful
during more than 300 samples of the signal and the
remaining components that occur in the beginning do
not appear. This is a cantilever behavior in the anten-
na beam as shown in Fig.17 (c¢). In this mode the
antenna tip shows a more flexible vibration pattern
than others. Because of that the dominant frequency
component lasts longer than in the other cases.

When analyzing the vibration signals at 0.75L ,
0.8L and 0.9L , the behavior of the spectrogram is en-
tirely different from the previous cases. Three spectro-
grams for the signals at lengths 0.75L , 0.8L and 0.9L
are shown in Fig.19 (c), (d) and (e), respectively.
Although all three cases have a powerful frequency
component in the beginning ( most yellow colored
one) , they disappear with time. This is because the
vibration mode is in Zone 3 of Fig.16 and because of
the cantilever action becomes stiffer, these modes
quickly disappear. Now the vibration pattern is similar
to that in Fig.17 (c¢). This verifies the existence of
multiple vibration modes when a contact happens to-
wards the distal end of the antennal probe. In fact, it

is as expected by the numerical solutions of vibration
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analysis of the model of the antenna.
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Fig. 18 Spectrogram of the norm of the vibration
signal at (a) 0.25 L (b) 0.5 L.

Moreover, many powerful frequency compo-
nents can be obtained in the beginning than in the
cases presented in Fig 18. That means, in the begin-
ning there are many vibration modes and most of
them disappear after 100 samples, and the rest of
them also have very low power compared to the DC
component. Fig.19(e) has more powerful frequency
components in the beginning than for all other cases,
and also, they all vanish quickly. Therefore, it is
unable to identify a good dominant frequency com-
ponent to carry the properties of the entire vibration
signal. More significantly, the 0.75 L and the 0.8 L
cases are in the beginning of the deviation from the
linear behavior in Fig.16. The 0.9 L case is observed
in the deviated region. By applying an adaptive band
pass frequency tracking filter, the most suitable fre-
quency component may be found to represent the
dominant frequency. With that it will be able to esti-

mate the distance in the full range of the antenna.
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Fig. 19 Spectrogram of the norm of the vibration
signal at (c¢) 0.75 L, (d) 0.8 L (e) 0.9 L.

5 Conclusion

This paper presented a bionic active tactile sen-
sor inspired by the antenna of the stick insect, which
was capable of object detection, material classifica-
tion, and object localization. Since the existing
methods were unable to predict the contact distance
along the full length of the antenna, the reason for

this scenario was analyzed. Initially possible causes
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for the abnormal behavior were identified using
mathematical analysis based on the Euler-Bernoulli
beam element model. Form the mathematical analy-
sis, vibration mode change in the antenna beam was
identified as the reason for the abnormal behavior of
the results. The results obtained from mathematical
analysis were verified using experimental results ob-
tained from spectrogram analysis, which was in
good agreement with the theoretical analysis. As the
theoretical results fully agreed with the experimental
results, it was concluded the mode of vibration
change was the reason behind the abnormal behavior
of the results. A suitable method to use the full range
of the antenna probe was suggested. As an approach
for Achieving better performance in material classifi-
cation, an ANN model was developed that used pre-
processing through signal processing techniques. For
the material classification task, it introduced SVM,
which provided better accuracy than with existing
signal processing techniques and ANN model. While
the overall accuracy obtained from the ANN was 80.
8% , better than 99% accuracy was obtained through
the SVM model for the same data set in the classifi-
cation process at a lower computational cost. Hence,
the SVM was selected to classify the materials, as it
provided high accuracy at a low computational cost.
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