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Abstract ; In constrained motion control of a robot, the interaction force is an important variable, which directly describes the state

of interaction. It is required in a number of algorithms for interaction control. Desirably, the interaction force has to be measured

by force sensors. However, there are inherent limitations with force sensors, such as the cost, sensing noise, limited bandwidth,

and the difficulty of physical location at the required place, which is dynamic. In the present paper, the interaction force is esti-

mated by using high order sliding mode observers. An adaptive version of a high order sliding mode observer is developed to ro-

bustly reconstruct the interaction force. Experimental results are given to show the effectiveness of the developed algorithms.
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1 Introduction

Interaction control is an important problem in
practice'"*! for a constrained robot manipulator even
though it is not applicable in free space motion con-
trol. During the interaction phase, the interaction
force provides rather direct and representative infor-
mation about the state of interaction. However, in-
teraction force information is not conveniently and
accurately available through direct sensing. To sense
the interaction force between a robot manipulator and
its interacting objects, a force sensor has to be
mounted at the location of interaction, which is
moving with limited access and may also be delicate.
For these reasons, the force measurement is usually
done at the wrist of the robot hand. The force that is
sensed in this manner has to be calibrated and fil-
tered before it can be used in an interaction control-
ler. The resulting information may still be inaccurate
because what is sensed is the internal force at the
wrist while what is needed is the real interaction
force between the robot end-effector and the interac-

ting object'™*’. As pointed out "

, the application
of a force sensor may introduce some unavoidable

problems, such as sensing noise, limited bandwidth,

and self-varying properties due to temperature
change, in addition to the previously mentioned dif-
ficulties. Reconstruction of the interaction force
through estimation algorithms instead of direct meas-
uring is preferable in this context. The interaction
force was considered as an external disturbance and
estimated by using a disturbance observer where the
estimation error converged to zero, asymptotical-
ly[8,9]

was then applied in a force control algorithm. It was

. The estimated interaction force information

shown analytically and experimentally that the algo-
rithm could reconstruct the interaction force and guar-
antee the stability of the combined observer-controller
system. Also, the bandwidth of the system increased
as a result. Since the interaction force estimation only
converged asymptotically, true real-time information
of the force was not realized. The robot manipulator
was commanded to follow exactly the same trajecto-
ries in both free motion and constrained motion' ",
The difference between the joint torques in these two
cases was taken to represent the external interaction
force. The interaction force was reconstructed in this
manner. However, this approach has limitations not
only in its theoretical analysis, but also in practical

implementation. In particular, controlling a robot to
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follow exactly the same trajectories in both free and
constrained motions is a major challenge.

The past work that is mentioned here also has
the common limitation that aprecise dynamic model
of the robot manipulator is assumed, even though
this is not quite realistic. The dynamic model was i-
dentified through least-squares estimation of the dy-
namic parameters just before interaction''’. The i-
dentified dynamic model was used for the external
force estimation. The torque difference due to the ex-
ternal interaction force was calculated by comparing
the joint torque predicted by the identified dynamic
model and the actual actuating torques at each joint.
The effectiveness of the proposed algorithm was test-
ed using an one-degree-of-freedom manipulator
through numerical simulation. A limitation of this
method is that the velocity is obtained by directly
differentiating the position measurement with respect
to time. This may be acceptable in numerical simula-
tions, but in physical implementations, measured

120 Such noise will be

joint position contains noise
amplified in the velocity that is obtained by differen-
tiation and the result may be unacceptable in control-
ler implementations. Another limitation of that ap-
proach is the assumption that some dynamic parame-
ters such as the coefficient of friction are constant
during both free and constrained motions. This as-
sumption can be unrealistic since, for example, past
work has indicated that the coefficient friction is
time-varying and uncertain "*'*'

Since the joint velocity information is required
in interaction control algorithms, preferably, it
should be estimated'”'"'. Simultaneous estimation of
joint velocity and external force is particularly desira-
ble for interaction control algorithms. Sliding mode
observer, which is a robust observation algorithm,
finds its application in this context. A second-order
sliding mode observers was applied to simultaneously
estimate the velocity and the external interaction

force! 11

. Experimental results were given to show
the effectiveness of the algorithm. An accurate dy-

namic model of the robot manipulator was assumed

in their work. Also, the interaction force was esti-
mated based on the concept of equivalent output
feedback ' ™'. A low-pass filter was applied to obtain
the interaction force signal. Due to the use of a low-
pass filter, a compromise had to be made between
the smoothness and the time lag of the estimated in-
teraction force.

The present work is inspired by the early
work [ 192123 ,

mates of the interaction force and velocity as re-

which provides more accurate esti-

quired in interaction control algorithms. The rest of
this paper is organized as follows. In Section 2, the
robot manipulator that is studied is introduced. The i-
dentification of dynamic parameters is presented in
Section 3. Simultaneous estimation of velocity and
external force is proposed in Section 4. In Section 5,
two existing algorithms for interaction force estima-
tion are introduced and compared with the developed
approach. Concluding remarks are given at the end

of the paper.
2 Problem Formulation

The platform under study is a four-degree-of-
freedom commercial robot manipulator ( Whole Arm
Manipulator, or WAM ) as shown in Fig. 1. The

first and the third joints are fixed in order to simplify

the system into a planar two-link manipulator.

Fig. 1 (a) WAM; (b) Schematic representation

of WAM.

A schematic representation of the simplified
two-linkrobot is shown in Fig. 2.

The robot manipulator is equipped with joint
position encoders. However, there are no joint ta-
chometers and force sensor to sense the joint veloci-

ties and the interaction force.
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N “
Fig. 2 Schematic representation and coordinate frame
of simplified two-link WAM.

In order to study the effectiveness of the inter-
action force estimation algorithms, a proper motion
trajectory has to be used. The Cartesian space refer-
ence trajectory that is used in the present work is
shown in Fig. 3. The corresponding joint space refer-
ence trajectory is shown in Fig. 4. The reference traj-
ectory is selected so that the manipulator will not
pass through the singularity positions (or for joint 2)
of the manioulator. Hence, the robust singularity
handling algorithm is not used in the control algo-

rithms.
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Fig. 3 Cartesian space reference trajectory

in validation experiment.
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Fig. 4 Joint space reference trajectory in
validation experiment.

When the trajectory tracking controllers are im-
plemented, the robot end-effector will interact with-
the environment. A force sensor is placed at the end-
effector to measure the interaction force. This force
sensor is used for validation purposes only. The ex-

perimental setup for calibration is shown in Fig. 5.

Fig. 5 Experimental setup for validation of the interaction

force estimation algorithm.

The coordinate system of the force sensor as de-
fined by the manufacturer in software is shown in
Fig. 6. Data logging of the force sensor is done using
a separate interface in the host PC, which runs Mi-

crosoft Windows.

Fig. 6 Coordinate system of the force sensor.

The validation scheme is indicated in Fig. 7.
Here the trajectory tracking algorithms that use joint
space inverse dynamics will be employed. The ob-
served interaction force and the measured interaction
force will be compared to verify the effectiveness of
the interaction force estimation algorithms.

Ideally, if the joint encoder readings are free of
measurement noise, the velocity information can be

reconstructed by direct differentiation. If the dynam-
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ics model of the robot manipulator is precise, the ex-
ternal interaction force can be determined explicitly
from the dynamics model of the robot manipulator in
constrained motion. However, the dynamic parame-
ters provided by the robot manufacturer are not accu-
rate. Also, there is significant measurement noise in
the encoder. The dynamics model of the studied ma-

nipulator will be identified in the next section.

Interaction

Interaction Force | _Force £,
—

Observer

Interaction Force

Reference [ Inverse - p Moasorete tF,
Trajectory [ Dynamics T Obstacle F -

based -

Controller

Fig. 7 The validation scheme of the interaction

force estimation.

3 Dynamic Parameter Identification

The robot manufacturer provided some dynamic
parameters based on a CAD model of the manipula-
tor. However, deviations are expected in the actual
dynamic parameters since some error is unavoidable
during the manufacturing process. Additionally, the
joint frictional torque is ignored by the manufacturer.
The joint space dynamic model of the robot manipu-
lator is given by

M(q)q +C(q,9)q + Fyq + Fesgn(q) +6(q) =
=] (q)F,
(1)
where

q - joint position vector ( 2 X 1)

q - joint velocity vector (2 X 1)

¢ -joint acceleration vector ( 2 x 1)

M(q) -inertia matrix ( 2 X 2)

C(q,q) - Coriolis and centrifugal matrix ( 2 x 2)

F - viscous friction matrix ( 2 X 2)

F - Coulomb friction matrix ( 2 x 2 diagonal)

sen(q) -2 % lvector whose components are
sign functions of joint velocity

G(q) - gravity vector ( 2 X 1)

T - joint actuator torque vector, ( 2 X 1)

J(q) - Jacobian of the manipulator ( 2 x 2)

F . - external interaction force ( 2 x 1)

In order to enhance the accuracy of the interac-
tion force estimation, the dynamic parameters of the
manipulator will be identified as well. An offline dy-
namic parameter identification algorithm could be
used to obtain the dynamic parameters. However,
due to the uncertainty of the friction parameter in
each joint, the identified model could not accurately
characterize the dynamics of the manipulator. Neural
network-based compensator shown in Fig. 8 is used
to handle this uncertainty.

A neural network with one hidden layer and
back propagation algorithm is used here. Since the
calculation of the joint torque residue is based on the
states of the two joints, the compensation torques for
joint 1 and joint 2 are considered simultaneously u-
sing the same neural network shown in Fig. 8.

Eight hidden layer nodes are used. Also, w; =
connection weight between the input layer and the
hidden layer; w;, = connection weight between the
hidden layer and the output layer; A7, = torque com-

pensation for joint 1; and At,= torque compensation

for joint 2.

Input Layer Hidden Layer Output Layer

Fig. 8 Neural Network based torque compensator.

As the activation function, the sigmoid function
is used here as given by
1

1+e™

(2)

o(x) =

The inputs to the neural network are the joint
states, which are given by the corresponding joint

position ¢ and joint velocity ¢ . In addition, joint ac-
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celeration ¢ is used as an input to the neural network.
The velocities and accelerations are reconstructed u-
sing the sliding mode-based robust differentiator'*’ .
The output of the neural network is the torque differ-
ence between the actual joint torques that are calcu-
lated using the joint actuator current, and the predic-
ted joint torques. The neural network is trained using
input data and the corresponding outputs. After train-
ing, the neutral network will act as a compensator to
compensate for the torque difference that will be
used in the interaction force estimation algorithms.

The effectiveness of this torque compensator is
studiedby using the validation scheme shown in
Fig. 9.

Prediction

Actual 5
Torque [ oy Inverse Dynamics based on
k2 — Identified Dynamic
Parameters

Validation
Trajectory,

Tverse
Dynamics
based
Controller

Fig. 9 Validation process of offline dynamic parameters

with neural network-based compensator.
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Fig. 10 Joint 1 actual torque versus predicted torque.

The actual applied joint torque and the predicted
torque are compared and the results are shown in
Fig. 10-Fig. 13. It is observed from these results that
the dynamic model is sufficiently accurate when in-
tegrating the neural network-based compensator in
the validation process. The identified dynamic pa-
rameters and the compensator are used in the interac-

tion force estimation algorithm given in the next sec-

tion.
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Fig. 11 Joint 1 torque prediction error.
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Fig. 12 Joint 2 actual torque versus predicted torque.
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Fig. 13 Joint 2 torque prediction error.

4 Interaction Force Estimation through
Adaptive High Order Sliding Mode
Observer

An interaction force estimation algorithm that u-
ses an adaptive high order sliding mode observer is
proposed in this section. It will facilitate robust inter-
action force estimation in the presence of measure-
ment noise. First, the dynamic model of the robot
manipulator as given in Eq. (1) is rewritten in the

state-space representation.
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Letx, =q ,%,=¢ ,u=7. Then, the joint space
robot dynamics equation may be represented in the

state-space formulation as, x, =x,

562 =f(t9x1’x29u) +§(t,xl,x2,u) (3)
Yy =%
where

f(t,x] ,xz,u) == Mﬁl(xl) [C(xl ,x2>x2 + Fyx, + chgn(xz) + G(x]) - u]

E(t,x,,%,,u) == M_I(x1> [AT + JT(x1>Fe]

x, € R*is the joint position encoder reading; x,
€ R’is the joint velocity of the manipulator; f(z,x, ,
x,,u) € R® represents the nominal dynamics of the
mechanical system; and £(¢,x,,x,,u) is the combi-
nation of the model inaccuracy induced terms A7 (re-
constructed from the neural network-based compen-
sator) and the external interaction force F, . The rep-
resentations of f(#,x,,x,,u) € R’and &(1,x,,x,,u)

are given by

The non-adaptive high order sliding mode ob-
server has been implemented ™ to reconstruct the
external disturbance. A main limitation of this algo-
rithm is that it is rather difficult to determine the ob-
server gains to guarantee the convergence of the ob-
server. Adaptive sliding mode based differentiators
have been proposed'®" ). The observer gains could
be tuned on line to guarantee the convergence of the
robust differentiator.

21, 23]

Inspired by the work! , an adaptive sliding

(1%, % ,0) mode observer is designed now to reconstruct the in-
1 sV 9 V2
Sty %5 ,u) = (4) teraction force. The observer adaption laws are de-
f2(t’x] ’stu)
£.(1 ) signed based on the Lyapunov approach. The observ-
’x ?x ’u .
ECtox, 2y u) = {61( 1572 )} (5) er equations are
2 t’x] s Xy, U
;n = 5;725 + }‘211 ‘x]i - &li ‘2/3Sign(xli - 9;15) + k(2 - 5511') (6)
;Gzi :f;‘(xl’;ﬁz,u) +/‘li ‘;Cli _5521"1/251@”(;” _562» +k1i(;cli _'/;62i> +2i (7)
;i = }\055ig”(9;1i - %) (8) s, = ;cl - x, (13)

where A, , A, and A, are gains to be deter-
mined so as to guarantee the convergence of the esti-
mation error.

For the derivation simplicity, a matrix represen-
tation is used for the observer as follows:

551 =9hcz +}‘2 ‘xl _551 ‘2/3

_5;7|> + ky (%, _5;7|) (9)

sign(x,

Xy =f(x1,x2,u) +/\1 ‘xl _xz‘l/Z

. ) . ) ) (10)

sign(x; —x,) + k(% —x,) +z
;=/iosign(9;l -x,) (11)
The variables in Eq. (9) - Eq. (11) are the
vectors that correspond to the scalars of Eq. (6) -

2] Before deri-

Eq. (8), as for example, used in'
ving the adaptation law, two new variables are de-
fined as

S, =X _561 (12)

The parameter A, is incorporated such that
g=x, =x, + A, |x, —x,|2/3sign(x, - x,)
(14)
Comparing Eq. (9) with Eq. (14, the deriva-
tive of s,is given by
5, =%, — ;cl == (A, = A)) |s, | sign(s,) = kys,
(15)
LetA, = )12 — A, and define the Lyapunov func-
tion V, .

1
v, =5<s§ +A3) (16)

The time derivative of V, along the system traj-

ectory is
V, =s,5, + A, X.z
=5, [= &, |5, [Psign(sy) —hosy] + 4, A,
== kysy + A, [A, =5y [, [Psign(s,) ]

(17)



14 Yanjun WANG et al; Robot Interaction ForceEstimat

ion Using an Adaptive Sliding Mode Observer

Select the adaption law for)A\2 as

x

Ay =, ‘52 ‘2/3

sign(s,) (18)

Then we have,
V, == kys3 (19)
In this manner the convergence of s, is estab-
lished. Similarly, the derivative of s, may be repre-
sented as

Ay =sy s, 7sign(s,) (26)
)‘to =sljsign(sl)dt (27)
0
we have
V, == kl‘S? (28)

Thus, the convergence of s,is established. The

results of the interaction force estimation are given in

- s * Fig. 14 - Fig. 17.
sl - xl B xz (20> g E g dli ion Force vs. M d Interaction Force (x direction)
' 2 ’ — Measured
There should be a parameter A, such that 0 . e st
3 . 2 5 1] [
q =% :f(xnxz’u) + o 4 [ \ ; ‘ }
3 \ \
e IV R | | | |
A, ‘31‘ sign(s,) + A, [sign(s,)dt £ N \ | | | |
0 £ | | | | | |
g -12 | | “ ‘ \ |
By comparing Eq. (10) with Eq. (13), we B ‘. K |
-16 \/ [ [
have o \ V \
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Time (seconds)
s = xl - 9;72 =
. i Fig. 14 Estimated force versus measured force (x direction).
A=A [ [Psign(s) + g
) . 25 Interaction Force Estimation Error (x direction)
(Ag = Ay) |sign(s,)dt = ks, 2
0 -
%, 15
Defining A, = A, = Ajand X, = A, = A, we 21
have £ o0s ~( ﬂ f
| B o el LAy, | Py, “} Nl
. 12 . . S
s, == A, |s, |sign(s,) = X, |sign(s,)dt — ks, s f | 0
|
0
(23) 1o 5 10 e (slesconds) 20 25 30
A new Lyapunov function V| is chosen as
1 Fig. 15 Force estimation error (x direction).
2 2 2
=— + +
Vl 2 (Sl Xl XO) <24> : Esti d Interaction Force vs. M ion Force (z direction)
The derivative ofV,along the system profile is os A A " —
. ' A 7\ !
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g y g o WI/ \ I&mﬁ‘ﬂ‘wf \ !v\.& A I} "\.»‘-‘
' ) ) £ ! !
Vi=sisi + A A + X4, = S sl
g |
t
1 [_ Ay Lsy [V2sign(s)) = Ao |sign(s,)dt - klsl] + *
0 Lag 5 10 15 20 25 30
2 x Time (seconds)
A+ A4 =
_ klsf + A, /‘\1 _ ‘ 5, ‘ '/zsign(sl )]+ Fig. 16 Estimated force versus measured force (z direction).

A, [)10 - sljsign(sl )dt]

It is seen that in the x direction, the interaction

0

Selecting the adaption law for A, and A, as

force reconstruction result is satisfactory. The force
(25) reconstruction error for this direction is small. How-
ever, in the z direction, the force reconstruction re-

sults are rather deteriorated. The possible cause for
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this error is the sliding motion in this direction. Ac-
cordingly, when the end-effector is moving in this

direction, chattering may happen.

14 Interaction Force Estimation Error (z direction)
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Fig. 17 Force estimation error (z direction).

5 Comparison with Other Estimation Al-
gorithms

The interaction force observer that uses an adap-
tive sliding mode technique is now compared with
two existing algorithms to show its superiority. The
first existing method reconstructs the interaction
force using inverse dynamics, while the other one u-
ses a second order sliding mode observer for interac-

tion force reconstruction.

5.1 Interaction Force Computation Using Identi-
fied Dynamic Model
The external interaction force can be reconstruc-
ted using the torques applied to the joint actuators
and the corresponding joint motion. To improve the
force estimation accuracy, the neural network-based
dynamic model compensator that was presented in
Section 3 is used here.
P e O CA<q,4>q}
’ + Fyq + Fesgn(q) +6G(q) ]

(29)

») will

Robust sliding mode-based differentiator'
be used in Eq. (29) to calculate joint velocity and
acceleration. The results of the interaction force re-
construction are given in Fig. 18 -Fig. 21. It may be
concluded from these results that this interaction
force reconstruction algorithm is inferior to the adap-
tive sliding mode observer as given in Section 4,

with regard to the accuracy of the interaction force

estimation.

Estimated Interaction Force vs. Measured Interaction Force (x direction)
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Fig. 18 Estimated force versus measured force (x direction).
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Fig. 19 Force estimation error (x direction).

Estimated Interaction Force vs. Measured Interaction Force (z direction)
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Fig. 20 Estimated force versus measured force (z direction).

2 Interaction Force Estimation Error (z direction)

5

| |
: m%\ﬁwu

1.
-0.

Force Estimation Error (N)

1o 5 10 15 20 25 30

Time (seconds)

Fig. 21 Force estimation error (z direction).
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5.2 Interaction Force Estimation Using 2" Or-
der Sliding Mode Observer

Observation of the states and unknown inputs u-
sing a second-order sliding mode observers has been
studied by others. In a recent work'*", the algo-
rithms for state observation and unknown input re-
construction have been extended to the multi-DOF
case. The same state-space model as in Section 4 will
be used now for evaluating this existing method. The
observer for simultaneous state and unknown input is

given by

X, =x, t2z;

(30)
(31)

;cz = f(t,x,,5,,u) + 2,
withx, € R*, x, € R’.
The ¢ -th components ( i = 1,2) of z, and z,are
defined as
z2, = A, |y, - 5011- 11/2 - sign(x, - 56”)
(32)
(33)

The interaction force is reconstructed by passing

2 = o, cosign(xy, — ;)

the equivalent output feedback through the low-pass
filter

F(s)= (34)

Ts +1

where 7', is the time constant for each variable,
and is a tuning parameter. There is a tradeoff be-
tween the smoothness and the time lag of the recon-
structed interaction force signal. This is illustrated by
comparing the corresponding figures with different
time constant. Fig. 22-Fig. 25 are the corresponding
results for 7, = 0.01.

ion Force vs. M d ion Force (x direction)
10 —Measured
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Interaction Force (N)
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Fig. 22 Estimated force versus measured force
(x direction, T, = 0.01).
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Fig. 23 Force estimation error
(x direction, T, = 0.01).
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Fig. 24 Estimated force versus measured force
(z direction, T, = 0.01).

ion Force Estimation Error (z direction)
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Fig. 25 Force estimation error (z direction, 7, = 0.01).

Fig. 31. Fig. 26 - Fig. 29 are the results for
T, = 0.1. It is seen that the reconstructed interac-
tion frce is smoother when compared with the cor-
responding results for 7, = 0.01. However, the
delay between the estimated signal and the meas-
ured one is much larger. This presents a trade-off
as mentioned before. T, = 0.05 is selected and the

corresponding experimental results are given in
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Fig. 30 - Fig. 33. It is observed that the smooth-
ness of the force reconstruction results and the
time lag are between the corresponding results for
T.= 0.1and T, = 0.01. This trade-off is unavoid-
able due to the presence of the low-pass filter. The
adaptive high-order sliding mode observer that was
proposed in Section 4 does not need a low-pass fil-

ter and reconstructs the interaction force directly.

5 Estimated Interaction Force vs. Measured Interaction Force (x direction)
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Fig. 26 Estimated force versus measured force
(x direction, T; = 0.1).
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Fig. 27 Force estimation error (x direction, 7, = 0.1).
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Fig. 28 Estimated force versus measured force
(z direction, T, = 0.1).
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Fig. 29 Force estimation error (z direction, 7, = 0.1).
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Fig. 30 Estimated force versus measured force
(x direction, T, = 0.05).
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Fig. 31 Force estimation error (x direction, 7, = 0.05).
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Fig. 32 Estimated force versus measured force
(z direction, T, = 0.05).
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3 Interaction Force Estimation Error (z direction)
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Fig. 33 Force estimation error (z direction, 7, = 0.05).

6 Conclusion

In this paper, an algorithm for interaction force
estimation, which employed adaptive high-order
sliding mode observer was proposed. It was able to
estimate the interaction force effectively without the
knowledge of the uncertainty bound. In order to en-
hance the accuracy of interaction force estimation, a
dynamic model was identified for the studied manip-
ulator. A neural network-based compensator was ap-
plied to represent the uncertainty in joint friction.
The effectiveness of the developed algorithm was
verified by experiments. The advantage of the pro-
posed algorithm over two existing methods was dem-

onstrated through experiments.
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