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Abstract : Automobile accidents cost over a trillion-dollar every year and this figure will continue increasing without employing

new technological solutions. Among these solutions, the automated lane-keeping system is one of the promising ones and such a

system consists of two essential technologies: road detection and steering control. In this paper, novel lane keeping algorithms are

proposed and are implemented using only a single off-the-shelf wide-angle camera as input. The implemented system is verified,

through both simulation and experiments, and is found providing satisfactory performance for an automated lane-keeping system.

When compared to the state-of-the-art lane-keeping systems, the implemented system can perform consistently across various am-

bient light conditions including the most challenging ones.

Key words: Automotive accidents, Autonomous driving, Road detection, Steering control, Lane detection, Lane keeping, Sens-
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1 Introduction

The ever-increasing car ownership in the whole
world leads to a rapid increment of traffic accidents.
As a result, every year over a trillion-dollar is spent
on medical cost, property damage, and other costs

associated with automotive accidents '

. Many of
these accidents are triggered by drivers’ inattention
and carelessness, resulting in roadway departure cra-
shes. Every year, over one million people around the
world are killed in such road crashes. This figure is
projected to increase by approximately 65% over the
next 20 years in the absence of new commitments to
preventive technology ‘2. Among the potential solu-
tions, the automated lane-keeping system is a prom-
ising one. In such a system, automated road detec-
tion and automated steering control are essential. -*’
Over the last two decades, manypieces of re-
search have focused on road analysis and lane detec-
tion. In the lane detection field, numerous research
papers can provide excellent performance in terms of
application requirements. Some examples are Multi-
ple-hyperbola-road model '*' | open uniform B-spline

curve model *' | and a K-means cluster algorithm"®’ .

They are often implemented alongside with tracking
algorithms such as Kalman filter and particle filter.
Due to these efforts, many lane-detection systems
have shown satisfactory performance in many chal-
lenging road conditions. However, these algorithms
generally demand high computation cost due to the
use of genetic algorithms or particle filters as well as
the derivation of the whole lane’ s structure. They
often required high-performance cameras or stereo
cameras. For the steering algorithms, the use of the
lane’ s structure information leads to complexity as
well as higher computation cost. Moreover, even
though lane detection and lane-keeping algorithms
are generally proposed independently in literature,
the processing of these lane algorithms in an actual
system takes substantial processing time thereby, in-
troducing significant latency in the steering action
and causing a deterioration in performance and sta-
bility upon integrating of the twos.

This paper proposes an automatic lane-keeping
algorithm integrated together with a lane detection
algorithm. The lane-keeping system utilizes an off-
the-shelf wide-angle camera as an input and uses the

proposed algorithm to estimate the position of a lane
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center referenced to the camera position instead of
the whole lane. After that, the vehicle’ s travel dis-
tance and direction during the processing are compu-
ted and the estimated lane position is adjusted ac-
cordingly. And then, the new estimated position is
used to compute the required steering angle for main-
taining the vehicle at the center of the lane through
the proposed steering algorithm. The algorithm con-
sists of only four simple equations and thus, the
complexity and the computation cost are kept as low
as possible while providing satisfactory road keeping
performance.

The paper first provides an overview of the pro-
posed lane-keeping system, followed by its detailed
implementation. After that, the performance of the
implemented system is investigated through simula-
tions and the results are presented to observe the ef-
fectiveness of the proposed system. The system is
then physically implemented in an electric vehicle
(EV) utilizing only an off-the-shelf webcam as the
input. The implemented system’ s performance is e-
valuated through a set of driving experiments under

both day and night road conditions.
2 Lane Keeping System

The lane-keeping system contains three main
subsystems: a lane detection subsystem, a Latency-
Error-Correction (LEC) subsystem and an automa-
ted steering control subsystem. The lane detection u-
ses images captured from an off-the-shelf wide-angle
camera as an input. The captured RGB images are
first transformed into grey-scaled images. The trans-
formed images are then further processed to remove
effects from the ambient-light condition by using a
local-area-intensity-transformation ( LAIT ) algo-
rithm. The algorithm is discussed details in section
III-A. After that, the processed images are trans-
formed into two-dimensional planar images which
are based on the world coordinate system by apply-
ing the inverse perspective mapping ( IPM) algo-
rithm '™, The resultant images are thresholded into

black and white ( BW) images, marking detected

lane lines in white and the rest in black. From these
BW images, positions of the lane lines in each im-
age are estimated using the Hough line detection al-

gorithm '*'

. These resulting Hough lines are grouped
to cluster together pixels belonging to same lane
lines. These grouped pixels are chunked together and
plotted on a histogram. Then, the histogram is nor-
malized resulting in a probability density function of
the lane positions. From the function, the maximum
likelihood of lane position is estimated, and the reli-
ability of the estimation is computed as well.

Even though the above algorithm can estimate
the lane position, the time, taken between the image
capturing and the position estimation, can be signifi-
cant especially with a slow processor. During this pe-
riod, the vehicle can travel a few meters and thus,
the current actual position can be a few meters away
from the estimated one. To address the issue, an
LEC, which can compute the current lane position
from the estimated one, is designed and proposed in
the present paper.

The calculated position is fed into the steering
control subsystem. The steering control uses the posi-
tion information and calculates an appropriate steer-
ing angle that will drive a vehicle toward and main-
tain at the center of the lane. In the following sec-
tions, the mentioned subsystems are discussed in de-

tail.
3 Lane Detection System

3.1 Preprocessing
First, the images from the onboard camera are
=0.299R + 0.587G

rey

transformed into greyscale ( I,
+ 0.114B ) to lessen computational cost. A sample

of the resultant images ( /_, ) is shown in Fig. 1. In

grey
1, , the lighting condition directly influences its
pixel-intensity value. Especially in the night, the
lighting condition is unevenly distributed as shown in
Fig. 1. Likewise, during the day, the light intensity
of the shaded area is significantly lower than that un-
der direct sunlight. Hence, minimizing this influence

is crucial to achieving a consistent lane-detection
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performance under various lighting conditions.

Fig. 1 A sample night road view.

To minimize the influence of the lighting condition,
the LAIT algorithm is proposed and applied. As lane
markings are painted on roads which have darker
colors, the algorithm indirectly improves the per-
formance of detecting lane markings. The LAIT in-
volves two stages. The first one is computing the
light intensity of the local area by using a low pass
filter (LPF), as is given by,
S
Hypp = % (1)

where H,,, is the LPF filter, J

matrix with the dimension ( n x m ), and n and m

. 18 an all-ones

are the number of row and column of the filter re-

spectively. The resultant image, /;,, , is shown in

Fig. 2b. The second stage is to derive the relative in-
tensity with respect to the background by applying,
Ly =1y~ 1 ipp (2)

where [, is the image with relative intensity and

the resulting image is shown in Fig. 2c. The process-

ing time of the LAIT algorithm can be reduced by

selective processing of only the area of concern from

the image, as shown in Fig. 2a.

3.2 Inverse Perspective Mapping
As pixels are equally distributed across viewing
angles in both horizontal and vertical planes, the
vertical viewing angle, 6 , relative to the horizontal
line can be translated based on each pixel’ s y coordi-
nate by using,
P 0,0
N

row

+ aoff)‘cl ( 3 )

where 0

max

gle, Nrow is the number of pixel rows, and 6, is

is the maximum vertical viewing an-

the angle between the most upper viewing angle and

the horizontal line as shown in Fig. 3b. The real-

world distance, y, in the Y direction from the cam-

era can be calculated by using,
h

" tan (6)

where h is the height of the camera respected

y (4)

from the ground.

Similarly, the horizontal viewing angle,
«a , relative to the horizontal center line, A, can be
translated based on each pixel’ s x coordinate by u-
sing ,

x-0.5 X x

max

= (5)

max
X

The real-world distance, x , in X direction from

the camera can be calculated by using,
x = ytan () (6)
Using real-world coordinate information (x,y)
and remapping pixels will result in the bird’ s eye
view of the image as shown in Fig. 2d and thus, re-

moving the perspective effect > 7).

3.3 Plotting Lane Lines

The IPM image is performed thresholding to i-
dentify potential lane-markings’ areas. In this stage,
these potential areas are represented in white while
the rest are represented in black; resulting in a black
and white (BW) image, as shown in Fig. 2e.

By using a horizontal and vertical scanning
method, the center points of the lane lines are
mapped. During the scanning, the widths of the
white lines are measured and those, outside a prede-
fined lane-width-range, are discarded. And then,
noises in the template are further reduced by omitting

unconnected pixels. The result is shown in Fig. 2f.

3.4 Computing Lane Center Point in a Real-
World Distance
In this step, straight lines in the template are

[12]

detected using Hough transform' ~'. The resulting

Hough lines are grouped to cluster together pixels
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(c) Relative Intensity Image.

(a) Image with area of concern.

(b) Image resulted through LPE

(d) IPM image with relative intensity.

(e) Threshold-IPM image.

(f) Image with plotted lanelines.

Fig. 2 Series of processed images.

belonging to same lane lines. In Hough transform,
lines are grouped based on their distance from the
center and their angle, creating the matrix image as

shown in Fig. 4.

C
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(b) Vertical

Fig. 3 Cross-section of the viewing angle.

From the matrix, lines are again grouped based

on their pointed direction towards lane positions on

-50 -40 -30 -20 -10 0 10 20 30 40 50

7]
Fig. 4 Hough transform of the image.

an x-plane line ( shown in Fig. 5a) , creating the his-
togram, which is normalized to form the Probability
plot shown in Fig. 5b. The mapping relationship be-
tween the Hough transform and the histogram,
which is shown in Fig. 6, can be derived using (7).
During the mapping process, the pixels with insig-
nificant magnitudes from the Hough transform are ig-

nored to avoid noise accumulations.

_Y ¥
sinB tanf
With respect tothe single-side lane line, the left

(7)

half of the probability plot is merged with the right
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half by using,
P (¥) = P(x) + P(x + w) (8)

wherex = {1,2,--- x5 w} , wis the width of

the lane, P(x) and P

and after merging respectively. The resulting histo-

max

nerge () are the probability before
gram is shown in Fig. (7). In order to remove sam-
pling effects, the histogram is filtered by using a low

pass filter and the resulting one is shown in Fig. (8).

x-plane line

Fig. 6 Mapping the relationship between Hough

transform and histogram.
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Fig. 7 Merged histogram.

From the histogram, the maximum likelihood of
lane’ s positionsis identified and then, the center of
the lane is calculated by using,

£ (9)

X = Xpp

where x,. is the lane center position, x;;, is the
left lane position, and w is the width of the lane.
The lane center position is plotted on an IPM image

as shown in Fig. 9.
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Fig. 8 Histogram after low-pass filter.

Fig. 9 IPM image with lane center marked

with ’x’ and its sides marked with "o’ .

The reliability ( I' ) of the derived lane center
position is analyzed by means of standard deviation.
First, the standard deviation ( o ) of the Histogram
(Fig. 8) is computed. The value of I' should be zero
when the histogram is uniformly distributed or o be-

comes 68.2% of the histogram’ s width ( w, ). The
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value of R should be one when the histogram is con-
centrated on a single point or o becomes zero. Driv-
en by the above correlation, the relationship can be
derived as

o
" 0.682 w,

The derived position is fused with information

r=1 (10)

from simultaneous localization and mapping
(SLAM) ""* in which the weight of the derived val-
ue is directly proportional to I' . In this way, the po-
sition of the lane at the time of image capturing can
be estimated. However, due to the computation
time, the actual current lane position can be signifi-
cantly different from that of the estimated position.
This phenomenon is termed as processing latency.
The next section proposes an algorithm that can pre-

dict the lane’ s position more accurately.
4 Latency Error Correction Algorithm

After the image has been captured, the lane de-
tection system takes time to process the image to find
the center of the lane. During this process, the vehi-
cle typically travels some distance and sometimes e-
ven changes its orientation by a few degrees. For ex-
ample, when the lane detection system takes 250 ms
to process while traveling at 10km/hr, the vehicle
can travel 0.7m during the processing and thus, the
estimated lane center position is 0.7m away from the
actual position. Moreover, during the processing, its
orientation can be shifted up to a few degrees as
well. To derive a more actuate lane center position,
the changes in the vehicle travel distance and orienta-
tion must be considered by using a LEC algorithm.

In this paper, the integration of vehicle velocity
is used to estimate the total distance ( s ) travelled.

During the image processing, the vehicle has moved

R
a distance ( d ) and its orientation is changed
through an angle ( « ), as well as the reference po-
sition is shifted from position B to A as shown in

Fig. 10.

The travel distance ( 3) during the image pro-

cessing is assumed mainly in YB direction and thus

e

Py

Lane
auel

Fig. 10 Vehicle movement during image processing.

the d can be expressed as,
de
dg

where d,, and d , are the travel distance in X,

0

N

d= (11)

and Y, direction, respectively, and s is the displace-
ment. The orientation changes ( o< ) can be derived

as

9

(12)

s
oc = —tand

L
where L is the distance between the rear and
front wheels and 6 is the steering angle. Detailed der-

ivation of o< is given in the next section. By using

the movement distance ( d ) and the rotation angle (
o« ), the transformation matrix ( 37 ) can be de-
scribed as [14],

cos ¢ -sin & -5 §in
A .
gl = |sin &< cos &< - cos &< (13)
0 0 1

—
The lane detection system can provide ( d,, )
which is the lane center position with respect to the

reference B, stated as,
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Front

Fig. 11 EV’s Bicycle Model

—> dPxB

v (14)

¥B
where d, =~ and d P,y are the distance between
Point B and the lane center in X, and Y direction re-

spectively. However, the current lane center position

—

dp, is referenced from the new position A and thus,
—

the transformation matrix is used to transform d,,

N )
from d, as given by,

—> d—>
=T (15)
1

The estimated current lane center position isfed
into the steering algorithm, which is discussed in

more detail in the next section.
S Steering Algorithm

Steering algorithm is based on the bicycle mod-
el of an Ackermann steered vehicle' ™. According to
this model, the rotation radius of the EV for corre-
sponding steering angles can be estimated. In this
model, the vehicle’ s trajectory is modeled as a bicy-
cle model where its steering angle is parallel to the
vehicle, its rear wheel exists exactly in the middle
point between two rear wheels of the vehicle, and its

front wheel exists exactly in the middle point be-

tween two front wheels as shown in Fig. 11. Its geo-

metric model ** is shown in Fig. 12. Based on this

model, the geometric relationship between steering
angle and rotation radius, R , can be written as,

L

R=— (16)

where R is the vehicle cycling radius, L is the

distance between front and rear wheels, and § is the

steering angle. Coordinates and points from Fig. 13

are represented in a 2D plane and are shown in Fig.
14.

circulararc
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Fig. 12 Bicycle’ s Geometric Model
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Fig. 13 Bicycle circling at a radius, R

Fig. 13 and 14 show that the rear wheel of the

. . - . -
bicycle moves from point A ( P, ) to point B (P;)
by applying a specific steering angle, 6§ . There are

some steps involved in order to reverse compute the
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. . . pund — .
required steering angle, 6 , given P, and P,, . Firstly,

the distance vector ( 71’) is derived by using,

—_  —> —>

d=P, P, (17)
B C

Fig. 14 Representation of coordinates

and points in 2D plane

The angle ( 8 ) between d and X can be calcu-
lated by using,

B =tan” — (18)

where d, and d, are d vector in X direction and
Y direction respectively.
After that, the required circling radius can be
calculated by using,
R= "
2sinf

By using the circling radius, the steering angle

(19)

can be computed by using,

0 =tan (20)

i L
R
6 Simulation

A set of simulations has been carried to study
the proposed steering algorithm’ s performance as
well as the LEC algorithm’s. The map of the simu-
lated lane is shown in Fig. 15.

To emulate arealistic control scenario, 100 ms
and 10 rad/s are chosen as the sampling period and
the maximum turning speed of the steering motor re-

spectively. Additionally, 100 ms of the computation-

al latency is added in the simulation. A constant of
10 m/s or 36 km/hr is used as the vehicle’ s speed.
The dimensions of the vehicle, mentioned in section
VII, are used to model in this simulation. The vehi-
cle’ s traveling path resulted from applying the pro-
posed algorithms and the lane’ s center are com-
pared. The error, the distance between the vehicle’ s
travel path and the lane’ s center, is presented in
Fig. 16. In this simulation, the root-mean-square
(RMS) error of 0.3875 m is achieved.

15 T T T T T T

L
0 5 10 15 20 25 30 35
meters

Fig. 15 Map ofthe simulated lane.

Lane's Center
Vehicle's Travel Path

meters

Error (meters)
o
T
\
/

meters

Fig. 16 Actual traveling path of a vehicle and resulting

error in lane centering with computational latency.

Based on the above simulation, the lane- keep-
ing error contains oscillatory components, which re-
sult from the latency that is present. To reduce the
oscillation, the LEC algorithm is deployed and the
result is shown in Fig. 17. By applying the LEC, the
RMS error can be reduced from 0.3875m to 0.0620m
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which is significant.
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Fig. 17 Actual traveling path of a vehicle and resulted

error in lane centering.
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Fig. 18 Actual traveling path of a vehicle and resulted

error in lane centering with random noise.

According to Fig. 17, under such a curvy road
condition, the lane-keeping error of less than 0.15 m
is achieved. Although an actuate estimation of lane
position is used in the above simulation, the esti-
mated positions of lane detection algorithms in an ac-
tual deployment can be noisy. To emulate that, an-
other simulation is carried out with random noise of

+/- 0.5 meters are induced in the estimation of the

lane center’ s position. The result of the simulation is
shown in Fig. 18. The RMS error and the maximum
absolute error are 0.1509 m and 0.3155 m respec-

tively.

Webcam

Control Prog 3 |
(Labview)
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(Windows)
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c £
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=

Controller Controller
Fig. 19 Block diagram of overall system setup.

According to the above simulation, even though
the noise increases the magnitude of the error, the
proposed system is still stable and can keep track of
the lane center. The next section will assess the actu-
al performance of the proposed algorithms through

physical experiments.
7 Experiment

The proposed algorithms are implemented in a
Toyota Tsusho vehicle which is a single-seater EV.
The overview of the system setup is shown in Fig.
19. A camera ( Genius WideCam F100 ') is
mounted on EV and is connected to the PXI control-
ler ( PCI extensions for Instrumentation) ''"'. The
specifications of the controller are shown in Table. 1.
LabView "' is used as the main programming lan-
guage to control the steering angle of the EV while
the proposed algorithms are implemented in the
MathScript Module "'’ of the LabView.

Table 1 PXI’s Specification

Description Specifications
Model NI PXIe-8133
Processor 17-820QM, 1.73GHz
Memory 4 GB (4 x 1GB DIMM)

Operation System Windows 7




58 Kyaw KoKo HTET et al: Lane Keeping Algorithm for Off-The-Shelf Wide-Angle Camera

The major components of the EV and its dimen-
sion are shown in Fig. 20 and Fig. 21 respectively.
The EV contains a main central processing unit
(CPU) controlling different parts of the vehicles
mainly through a CAN bus. It directly controls the
Drive controller, that is responsible for regulating
the rear wheels’ speed, and the Steer controller,
that is responsible for adjusting the turning angle of
the front wheels. The PXI controller is connected to
the main CPU via Ethernet as shown in Fig. 19.

Front Camera

Steer Wheel
Front Wheel
Rear Wheel
Fig. 20 Major components of EV.
h r
995
v
A
1750
* [mm]

Fig. 21 Dimensions of EV.

Experiments were carried out to validate the
performance of the implemented system. During the
experiments, the EV was driven by the algorithms
on a road section of the National University of Sin-

gapore (NUS) campus. The road section consists of

unevenly distributed tree shading and the map of the
road section is shown in Fig. 22. During the experi-
ments, the lane tracking and the steering actions
were done autonomously by the proposed algorithms
at a sampling frequency of 4 Hz and the driving
speed was kept at 10 km/hr.

Road Section

Fig. 22 The map of the road.

Three experiments were performed and the de-
tail results from the 1st experiment are shown in Fig.
23. These experiments were carried out during the
day and there were unevenly distributed tree shadows
present on the road. In Fig. 25, a set of sample ima-
ges captured with 20-frames-interval during the 1st
experiment is provided. The lane-keeping errors dur-
ing the next four experiments are plotted in Fig. 24.
The experimental data are analyzed, and its summa-

ry is given in Table II.

e

Fig. 23 Results from 1st Experiment.

According to Table II, the proposed system can
keep a maximum error below 0.45m and the RMS

error is an average of 0.124m. To validate the
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Table 2 Experiments’ Data

Experiment No. 1st 2nd 3rd 4th 5th

RMS Error (m) 0.143 0.119 0.103 0.131 0.123
Maximum Absolute Error (m) 0.432 0.313 0.254 0.284 0.291
Average Driving Speed (km/hr) 10.0 10.0 10.0 10.0 10.0

(b) 21st frame

(1) 161st frame

(j) 181st frame
Fig. 25 Selected frames during the 1% experiment.

performance of the proposed algorithms in a night
environment, another five sets of experiments were

carried out on the same road section of the NUS

campus. The first set of results are shown in Fig. 26
and the error results from the test are shown in Fig.
27. In Fig. 28, a set of sample images captured with
20-frames-interval during the first night experiment
is shown. The data from the night experiments is in-

vestigated and its summary is presented in Table III.

R A e

Fig. 26 Results from 1" Experiment.

Fig. 27 Results from the other four Experiments.

From Table III, it is evident that the proposed
system can keep the maximum error below 0.35m
and the RMS error is at an average of 0.105m. Dur-
ing the experiment, the lighting condition is evenly
distributed , and the road is relatively flat. Therefore,
to verify the performance in a bad ambient condition
on an undulating road, another five sets of experi-
ments were carried out on a different road section of
the NUS campus and the experiment results of the
first run are shown in Fig. 29. The error results from
the other four are shown in Fig. 30. In Fig. 31, a set
of sample images captured with 20-frames-interval
during the first experiment with a bad light condition

is shown. The data from these night experiments is
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Table 3 Night-Experiments’ Data

Experiment No. 1st 2nd 3rd 4th 5th

RMS Error (m) 0.157 0.085 0.095 0.085 0.102
Maximum Absolute Error (m) 0.307 0.235 0.254 0.201 0.213
Average Driving Speed (km/hr) 10.0 10.0 10.0 10.0 10.0

Table 4 Night-Experiments’ Data under the challenging condition

Experiment No. 1st 2nd 3rd 4th 5th

RMS Error (m) 0.142 0.127 0.145 0.094 0.141
Maximum Absolute Error (m) 0.329 0.302 0.332 0.255 0.330
Average Driving Speed (km/hr) 10.0 10.0 10.0 10.0 10.0

investigated and its summary is presented in Table
Iv.

According to Table IV, the proposed algorithms
can keep the maximum error below 0.35m and the
RMS error is at an average of 0.130m. Even though
the ambient condition is much worse than those in
the previous two sets of experiments, the perform-

ance is still similar and thus, the LAIT algorithm can

effectively reject the ambient effects from the envi-

ronment.

e) 81st frame (f) 101st frame HE =

(g) 121st frame (h) 141st frame

Fig. 29 Results from 1st Night Experiment
with bad lighting.

(1) 161st frame 1) 181st frame

Fig. 30 Error results from the other four Experiments.

Therefore, the proposed system is verified to be

ik) 201st frame 1) 221st frame

able to keep the vehicle in the center of the lane

Fig. 28 Selected frames during 1* night-experiment. within 0.45 m and with an average of 0.12m from
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the center under three different environmental condi-

tions. Video-footprints of the experiments can be
[20-21]

seen in

(a) Ist frame

e) 81st frame (f) 101st frame

(h) 141st frame

1) 221st frame

(k) 201st frame

Fig. 28 Selected frames during 1* night-experiment

under a bad lighting condition.

The average RMS errors for the three sets of ex-
periments are 0.1238, 0.1048, and 0.1298. The av-
erage maximum absolute errors are (0.3148, 0.2420,
and 0.3096. The variations in the RMS errors and the
maximum absolute errors between different ambient
light conditions are both within +/- 15% of the aver-
ages. Therefore, the proposed system can provide

similar performance in different ambient lighting

conditions.
8 Conclusion

This paper presented a lane-keeping approach
which consisted of the lane detection system, using
input only from a mono wide-angle camera, LEC al-
gorithm and the steering control system. Through
both simulations and experiments, the approach was
verified to achieve a satisfactory performance as the
average errors were less than the width of a lane
marking while the maximum error was approximately
10% of average lane’ s width during all the experi-
ments conducted under different lighting and road
conditions. As this paper focused on utilizing only
off-the-shelf web camera and a generic processor to
perform the auto lane-keeping task, the performance
can be further enhanced by fusing this system with
additional data from motion sensors, GPS, and local
map. Furthermore, a dedicated graphics processor or
a field-programmable gate array ( FPGA) can further

improve computation efficiency.
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