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Abstract : Gear transmissions are widely used in industrial drive systems. Fault diagnosis of gear transmissions is important for
maintaining the system performance, reducing the maintenance cost, and providing a safe working environment. This paper pres-
ents a novel fault diagnosis approach for gear transmissions based on convolutional neural networks (CNNs) and decision-level
sensor fusion. In the proposed approach, a CNN is first utilized to classify the faults of a gear transmission based on the acquired
signals from each of the sensors. Raw sensory data is sent directly into the CNN models without manual feature extraction. Then,
classifier level sensor fusion is carried out to achieve improved classification accuracy by fusing the classification results from the
CNN models. Experimental study is conducted, which shows the superior performance of the developed method in the classifica-
tion of different gear transmission conditions in an automated industrial machine. The presented approach also achieves end-to-end

learning that can be applied to the fault classification of a gear transmission under various operating conditions and with signals

from different types of sensors.
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1 Introduction

Gear transmissions are crucial components in
drive systems of various industries such as automo-
bile, railway, aerospace, wind turbine, and manu-
facturing (Lei ef al., 2014 ). The malfunction of a
gear transmission can cause unwanted system down-
time, expensive maintenance cost, and even cata-
strophic accidents. The fault diagnosis of gear trans-
missions has attracted increasing attention in recent
years with the growing demand for high reliability
and safety of operation. The accurate diagnosis of the
faults can provide valuable information to achieve
condition-based maintenance whereby the system re-
liability and efficiency would be improved. Different
fault diagnosis approaches have been developed in
recent decades that can be classified into two main
categories ; model-based approaches and data-driven
approaches ( Wen et al., 2018). With the advances
in the sensor technology and the communication
technology, data-driven approaches have gained
more attention over model-based approaches due to

the difficulties in deriving the model of a complex

system.

Vibration and acoustic emission ( AE) signals
have been widely used to detect the faults ofgear
transmissions as these signals can provide accurate
health indicators of the monitored gear transmissions
(Elasha er al., 2017). Also, accelerometers can be
utilized to collect vibration data without interrupting
normal operation. In traditional data-driven approa-
ches, feature extraction and selection are first con-
ducted to obtain representative features of the vibra-
tion or AE signals. Features in different domains
such as the time domain, frequency domain, and the
time-frequency domain are extracted. Then, various
classification methods are used to diagnose the faults
using manually extracted features. Typical classifica-
tion methods include artificial neural network, deci-
sion tree, support vector machine, and random for-
est. Li and He (Li and He, 2012) developed an ap-
proach for health monitoring, and fault diagnosis of
gear transmissions based on AE features, through
empirical mode decomposition ( EMD ) that in-

tegrates a threshold-based denoising technology. It
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showed an improved diagnostic performance of gear
faults than other EMD-based AE features. Cabrera et
al. (Cabrera et al., 2015) developed a fault diagno-
sis approach for spur gears based on random forest
(RF) and wavelet packet decomposition ( WPD).
The condition parameters of the vibration signal were
first extracted by applying WPD with multiple moth-
er wavelets. Then, the energy content of the coeffi-
cients for terminal nodes was used as the input fea-
ture for the classification using RF. They also studied
how to find the optimal number of trees and the
number of random features. Li et al. (Li ef al.,
2015) proposed a multimodal deep support vector
classification approach for gear transmission fault di-
agnosis with multimodal homologous features of the
gear transmission vibration measurements in time,
frequency and wavelet modalities. Yang et al. ( Yang
et al., 2015) proposed an improved approach for
SVM-based fault diagnosis by optimizing the model
parameters of SVM using artificial bee colony algo-
rithm. Their method achieved higher classification
accuracy and less computational cost than other opti-
mization algorithms. Lu et al. (Lu, Yan and de Sil-
va, 2015) developed an enhanced feature selection
method by integrating genetic algorithm, empirical
mode decomposition, and receiver operating charac-
teristic. Li et al. (Li et al., 2016) developed a gear
transmission fault diagnosis approach based on wave-
let packet transform ( WPT) and deep random for-
est. The statistical parameters of the WPT were first
calculated from the collected signals. Two deep Bolt-
zmann machines were then developed for deep repre-
sentations of the WPT statistical parameters. Finally,
a random forest was used to generate the diagnosis
results.

However, the traditional data-driven approaches
are based on manual feature calculation and selec-
tion. The manual process relies heavily on both the
knowledge of the failure mechanism and expertise on
signal processing of different types of signals. Also,
the variance in load and working condition can sig-

nificantly affect the results. Deep neural networks

(DNNs) provide new opportunities for data-driven
approaches with the end-to-end learning capability
from raw data. DNNs have been successfully imple-
mented in many areas such as speech recognition,
computer vision, natural language processing, and
robotics. Features can be automatically extracted
through training of the deep network structures with
massive linear and nonlinear transformations. The su-
perior performance of DNNs has also attracted the
strong interest of researchers in the area of machine
condition monitoring ( Xia et al., 2018). Jia et al.
(Jia et al. , 2015) developed a DNN-based fault de-
tection method for rotating machines. They used au-
toencoder to pre-train the DNN model. Then, super-
vised learning through the back propagation algo-
rithm was conducted to fine-tune the model for fault
classification. However, the Fourier transform was
still needed to process the original signal. Xia et al.
(Xia et al., 2017) proposed a fault diagnosis ap-
proach with stacked denoising autoencoder. Their
method achieved higher fault diagnosis accuracy and
better robustness to noise.

Fully connected DNN structures have a large
number of parameters that can cause high computa-
tional cost and an increased possibility of overfitting
problem. The convolutional neural network ( CNN)
uses shared weights in the structure, which results in
much fewer connections and parameters. It is less
likely that the training of the CNN model causes
overfitting when compared with fully connected
ones. Chen et al. (Chen, Li and Sanchez, 2015)
presented a gear transmission fault diagnosis method
using vibration signals and CNN. Their approach a-
chieved high classification accuracy. However, the
input features to the CNN model were still manually
extracted. More recently, Xia et al. ( Xia et al.,
2018) proposed an improved CNN-based fault diag-
nosis method for gear transmissions by fusing senso-
ry data from multiple sensors. Raw signals were used
directly and provided to the CNN model. With sen-
sor fusion, their method achieved improved diagno-

sis performance compared with traditional data-driv-
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en approaches. However, the sensor fusion in their
approach can only apply to the same type of sensors
and with the same sampling rate.

This paper develops a novel gear transmission
fault diagnosis approach based on the CNN model
and decision level sensor fusion. The raw sensory da-
ta from multiple sources are directly utilized as the
input to the CNN models to classify different types
of failures. Then, the classification results from each
CNN model are fused at the decision level to pro-
duce the final diagnosis result. An experimental stud-
y on the gear transmission fault diagnosis of an in-
dustrial machine is carried out to evaluate the effec-
tiveness of the developed approach. The rest of the
paper is organized as follows. In Section 2 knowl-
edge of CNN and sensor fusion are introduced. Sec-
tion 3 presents the system framework and the proces-
ses of the developed method in detail. Section 4
presents an experimental study of gear transmission
fault diagnosis which is to evaluate the effectiveness
of the CNN-based fusion approach. Section 5 con-

cludes the paper and proposes possible future work.
2 Background Knowledge

Convolutional neural networks ( CNNs) have
been successfully implemented in many applications
such as object detection in computer vision, sleep
disorder diagnosis in humans, and damage assess-
ment in pipelines. A CNN model usually contains
numerous multi-stage structures with both linear op-
erations and nonlinear transformations. The interme-
diate results are named feature maps ( LeCun, Ka-
vukcuoglu and Farabet, 2010). The two main opera-
tions of a CNN model are convolution and pooling.
A CNN model is composed of one or more such 2-
layer structures followed by fully connected layers
and a final classification layer. The feed-forward op-
eration of CNN can be represented by the following

function :
g(X) =g, (...g,(g,(X,00V),6%)...),0%)

(1)
Here X denotes the input data to the CNN mod-

el; 0V ,6% ,...,0"° are the model parameters inclu-
ding weights and biases; g,,g,,.-. ,gxare the opera-
tions at each layer. These functions generate interme-

diate feature maps between layers.

2.1 Convolution Operation
With the convolution operation, the input ma-
trix or vector is convolved with a set of learnable fil-
ters togenerate new feature maps (LeCun, Kavukc-
uoglu and Farabet, 2010). The convolution opera-
tion is given by
X0 =f( X" W XD 4By (2)
Here k is the layer index; m = 1,2,... ,M de-
notes the index of feature maps as the input; and m”
=1,2,...,M represents the index feature maps as the
output. The * denotes the convolution operation ap-
plied to the m”-th filter W'* with the m-th feature
map X" . B'" represents the biases. Then, the fea-
ture maps are provided to the nonlinear activation
function f. In this paper, the rectified linear unit
(ReLU) is selected as the activation function. ReLLU
has been shown to have good performance in many
CNN-based models ( Xing, Ma and Yang, 2016).

The function of ReLU is expressed as:

Yijh =maX(0’xij};) (3)

2.2 Feature Pooling Operation

Feature pooling is an operationthat reduces the
size of the feature map. A pooling layer fuses nearby
values in a feature map to become one value, using
a defined operator. Typical pooling operators include
average-pooling and max-pooling. In the present
work , max-pooling is selected. The formula of max-
pooling is:

Vi = max(yi,]-,k:iﬁi’ <i+u,jg <+wv) (4)

Here,u denotes the window length of the poo-
ling; and v denotes the window width. Max-pooling
generates the largest value within the window as the
value of the neighborhood. The stride size can be 1
or larger. Also, the size of the window can be de-

fined based on the training performance.
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2.3 Softmax Operation

In the classification of multiple classes, asoft-
max layer is usually utilized. Softmax can be seen as
the generalized version of logistic regression (D’
Ambrosio, Iannello and Soda, 2013). Using a data-
set containing n samples {x”}7_, . x'” € R"has a

s

i . i L)yTy(i) ) ~1 L)) Ty (i) L)y Ty (i)
P(t<)=]| x();a(L)):(zew} ) ) X [6(05 ) e<0£ )

I=1
. (L) _ (L) (L)
L s 0P =00 0h .,

6" ] are the softmax model parameters.

wherej =1, 2, ...

2.4 Classifier Level Sensor Fusion

Sensor fusion is the process of integrating data
from multiple sensor sources to produce more accu-
rate and reliable information compared with that pro-
vided by any individual sensor. Typically, there are
three levels of sensor fusion: data level fusion, fea-
ture level fusion, and classifier level fusion. Classifi-
er level sensor fusion can be applied to data from
different types of sensors. The final decision is ob-
tained by fusing the classification result from each
classifier. According to the output types of a classifi-
er, the classifier fusion methods can be divided into
three categories: abstract type, rank type, and meas-
urement type, with increased required information
(Xia, Kong and Hu, 2011). The measurement type
of classifier fusion contains the most information that
usually gives the most accurate results. A simple
method for the measurement type classifier fusion is
to linearly combine the posterior probabilities from

each classifier.

3 CNN-based Fault Classification with
Classifier Level Sensor Fusion

This paper presents a gear transmission fault di-
agnosis approach based on CNN models and classifi-
er level sensor fusion. The raw data from different
sensors are directly fed into various one-dimensional
CNN models. The features are extracted automatical-
ly by the training process of the CNN structures.
Then, the classification results, generated by the

CNN models, are fused at the classifier level to pro-

total number of s classes with the corresponding label
set {¢V 1" where:” e {1,2,...,s} . The softmax
layer outputs the probabilities of the input data be-
longing to all s classes. The probabilities generated

are given by

e<9.5L))Tx“>] T (5)

duce more accurate and reliable results. The pro-
posed method can be used with collected signals
from different types of sensors and with different
sampling rates. The flowchart of the proposed gear

transmission fault diagnosis method is shown in

Fig.1.
A/Gearboxes\‘
‘ Sensor 1 ‘ Sensor 2 eeoe ‘ Sensor n
Data acquisition and preprocessing ‘
CNN model ¢, CNN model C, CNN model C,
initialization initialization initialization
CNN model CNN model CNN model
training training training
Trained CNN Trained CNN Trained CNN
model model model

‘ Classification

Classification

Classification

Diagnosis result

Fig. 1 Flowchart of the gear transmission fault diagnosis

approach using CNN and sensor fusion.

Sensory datafrom the monitored gear transmis-
sions are acquired from different sensors. The data
contains the signals under normal condition and fault
conditions. After proper preprocessing to reduce the
effect of noise, the collected data from each sensor

is divided into the training subset and the testing sub-
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set. For data from each sensor source, a CNN model
is constructed. Then, the training subsets are utilized
for training the CNN models. Next, the testing sub-

sets are used to evaluate the diagnostic performance

and generalization capability of the trained CNN
models. The generated probabilities of each class are
then fused at the classifier level to obtain the final di-

agnosis result.

Input layer Feature maps Feature maps Feature maps Feature maps Output layer
xX© X(l) X(Z) XL3) X(4) X(5) X(G)
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Fig. 2 The CNN model structure of the proposed method.

The detailed structure of the one-dimensional
CNN model is shown in Fig. 2. Monitoring data of
thegear transmissions from the n sensors X, (i = 1,
2...n) are sent to the n CNN models. Each input X,
has a dimension of 1 X m'. The convolution opera-
tion is applied on X, by K‘l filters each having a size
of 1 X p| x 1. The convoluted result is then activated
by the ReL.U function. It produces K‘1 feature maps,
each with a dimension of 1 x (m' — p, + 1) . Fol-
lowed by the max-pooling layer, the feature maps
are subsampled using Equation (4). Another combi-
nation of convolution and pooling layers is stacked to
the CNN model. With the multiple combinations of
convolution and pooling layers, the model can cap-
ture representative features from the training process.
The feature maps after the last pooling operation are
fully connected to produce a one-dimensional vector.
Finally, a softmax layer is used to generate the prob-
abilities of the classification of input to each class.
Overfitting can be a problem in the training process
of deep learning. In this paper, the dropout strategy
is utilized to decrease the effect of overfitting ( Sriv-
astava et al., 2014).

4 Experimental Study

An experimental study is carried out to check
the effectiveness of the proposedgear transmission
fault classification approach using CNN and classifier
level sensor fusion. Gear transmissions in normal

condition and several faulty conditions in the con-

veyor system of an industrial machine are tested.
Magnetically mounted accelerometers are used to
collect the vibration signals of the gear transmissions
under four conditions. The proposed method is then
evaluated by checking the diagnosis performance and
by comparison with other cutting-edge fault diagno-

sis approaches.

4.1 Experimental Setup

In the experiment, the gear transmission condi-
tion dataset is acquired from the conveyor subsystem
of an automatic fish processing device. Fig. 3 shows
the experimental setup. It consists of a motor and a
gearbox. Two accelerometers are magnetically
mounted both horizontally and vertically on the sur-
face of the gear transmission. Vibration signals are
collected for four different gear transmissions with
four conditions, as indicated in Fig. 4. A National
Instruments PXIe data acquisition system is used to
collect the sensory data. The sampling frequency is

set to be 5 kHz.

4.2 Data Description

In this experiment, 1500 samples from the gear
transmission of each condition are collected from
each sensor. The sampling time is 0.2 seconds for
each sample. Therefore, each sample contains 1000
data points. There are 6000 samples in total. The vi-
bration signals of the four different conditions are
plotted in Fig. 5. To compose the training and testing

datasets, 70% of the samples are included in the
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(b)

Fig. 3 The experimental setup. (a) Drive system with
a motor and gearbox; (b) Vibration signal acquisition

using two accelerometers.

$o

Fig. 4 Faulty gear transmissions including those with gear
defect, bearing defect, and misaligned output shaft.

0 oh @)

(b)

25 50 75 100

Amplitude (V)
(=]

(d

0 25 50 75 100

Time

(ms)
Fig. 5 Vibration signals of the four different conditions.
training dataset. The remaining samples are divided
equally to form the validation dataset and the testing
dataset. First, the CNN model is trained on the train-
ing data to adjust the parameters. The model is then
validated using the validation dataset to see if over-
fitting occurs. The training process will be stopped
when the loss starts decreasing slowly, or when it
begins to increase. In this experiment, the training
process of the CNN model is continued for another
period even when the loss begins to increase. Given
the loss curve, an appropriate epoch is selected with
the corresponding CNN model parameters. The test
dataset is used to evaluate the performance of each
CNN model. Finally, the classification results from
the CNN models are fused to produce the final diag-

nosis results.

4.3 Discussion

First, two CNN models are established to clas-
sify thegear transmission fault using vibration signals
from each of the two accelerometers. Mini-batch sto-
chastic gradient descent is utilized to update the pa-
rameters of the models. The size of the batch is set at
100. The fault diagnosis result on the test dataset is
shown by the confusion matrix in Fig. 6. The confu-

sion matrix of the classification results indicates the
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overall accuracy of the classification, which is 99.

81%. It is seen that only two samples were classified

incorrectly.
Confusion Matrix
=
g 225 0 0 0 100%
5| 250% | 0.0% 0.0% 0.0% 0.0%
Z
» @] 0 224 0 0 100%
Z Q| 00% | 249% | 00% 0.0% 0.0%
L
=
2 m 0 1 224 0 99.6%
s A 0% 0.1% | 249% | 0.0% 0.4%
o
z 0 0 1 225 99.6%
E 0.0% 0.0% 0.1% | 250% | 04%
100% 99.6% 99.6% 100% 99.8%
0.0% 0.4% 0.4% 0.0% 0.2%

Normal DG DB MOS

Target Class
Fig. 6 Confusion matrix of the classification results.

To demonstrate the performance of the devel-
oped method, a comparison is conducted between
the CNN-based approach and other data-driven ap-
proaches with manual feature extraction. Features in
both time and frequency domains are calculated. Fea-
tures selected ina recent paper (M. Xia et al.,
2018) are used in this exercise. Then, SVM with a
linear kernel, SVM with a quadratic kernel, K-nea-
rest neighbor (KNN) , and Weighted KNN are used

to classify the faults. The comparison of the results is

shown in Fig. 7. All the approaches perform well in
detecting the normal condition. The method proposed
in the present paper achieves higher diagnosis results
than all the other approaches for all the faulty condi-
tions. The CNN-based method with classifier level
sensor fusion has the best overall performance.
Next, the effectiveness of the sensor fusion in
the proposed method is evaluated by comparing with
the diagnosis resultsfor data from one sensor, by the
same CNN model. Each test is repeated ten times.
The comparison of the averaged training and testing
accuracies of the two methods is provided in Table 1.
The testing accuracy of the proposed method is 99.
78% . The result using signals from one sensor is 97.
58%. It is seen that the proposed method achieves
better diagnosis performance at higher accuracy and

lower standard deviation.

[ Proposed method [l Linear SVM [l Quadratic SVM [0 KNN [l Weighted KNN

100 T T T T 1
99 {
98 |
97 {
96 {
95 1
94 |
" H ] |

DB N 3 0l

Normal DG MOS Overall
Conditions

Accuracy (%)

Fig. 7 Results of comparison with other approaches.

Table 1 Classification Results by Sensor Fusion or Single Sensor.

Average Standard deviation
o Multiple sensors 99.96 0.08
Training Accuracy (%)
One sensor 98.18 0.69
. Multiple sensors 99.78 0.33
Testing accuracy (% )
One sensor 97.58 1.40

5 Conclusion

This paper presented agear transmission fault di-
agnosis approach using deep learning and sensor fu-
sion. CNN-based models were used to classify the

condition using sensory data from each sensor.

Then, classifier level sensor fusion integrated the re-
sults from each CNN model to produce the final clas-
sification results. The proposed method obtained sat-
isfactory fault classification results. By comparing
the developed method and the traditional data-driven

approaches with manual feature extraction, the pro-
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posed fusion method showed superior performance.
The end-to-end learning property enables the general
application of the method to gear transmission fault
diagnosis with different faults and working condi-
tions. Also, the classifier level sensor fusion can be
applied with different sensors and with different sam-

pling rates.
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