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Abstract ; This paper concerns the data-driven sensor deployment problem in large spatiotemporal fields. Traditionally, sensor de-
ployment strategies have been heavily dependent on model-based planning approaches. However, model-based approaches do not
typically maximize the information gain in the field, which tend to generate less effective sampling locations and lead to high re-
construction error. In the present paper, a data-driven approach is developed to overcome the drawbacks of the model-based ap-
proach and improve the spatiotemporal field reconstruction accuracy. The proposed method can select the most informative sam-
pling locations to represent the entire spatiotemporal field. To this end, the proposed method decomposes the spatiotemporal field
using principal component analysis (PCA) and finds the top r essential entities of the principal basis. The corresponding sampling
locations of the selected entities are regarded as the sensor deployment locations. The observations collected at the selected sensor
deployment locations can then be used to reconstruct the spatiotemporal field, accurately. Results are demonstrated using a Nation-

al Oceanic and Atmospheric Administration sea surface temperature dataset. In the present study, the proposed method achieved

the lowest reconstruction error among all methods.
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1 Introduction

Recently, researchers have endeavored to moni-
tor and reconstruct an extensive spatiotemporal field
using limited resources. Both model-based and data-
driven sensor deployment strategies have been inves-
tigated to obtain near-optimal sparse sampling loca-
tions that can retrieve maximal information from the
spatiotemporal field. Especially, data-driven approa-
ches, such as sparse learning, investigate linear
mapping between low-dimensional sparse observa-
tions and the original high-dimensional signal.
Therefore, sparse learning approaches, such as com-
pressive sensing and principal component analysis,
have been widely used to recover signals from limit-
ed observations collected in the near-optimal sam-
pling locations "'/,

Typically, model-based approaches have uti-
lized robotic sensors to establish environmental mod-

els and find suitable sensor deployment locations. In

these approaches, a fleet of robotic sensors is sent
out to explore a field of interest for a generalized un-
derstanding of the environment. Near-optimal sam-
pling locations can then be computed based on the
environmental model. Nguyen and colleagues devel-
oped a strategy for driving robotic sensors in a mo-
bile wireless network to efficiently monitor the envi-
ronment and predict spatial phenomena "*/. Notably,
they considered the case where the received sensing
locations can be inaccurate. Their proposed method
can design optimal sampling paths and locations for
mobile robotic sensors, given the localization uncer-
tainties. Besides, energy constraints are considered,
which makes this strategy practical for mobile sensor
networks. Subsequently, Ma and his colleagues de-
veloped a learning and planning method for robotic

sensors to sample the environment ™

. They pro-
posed a framework that can persistently monitor the
environment of interest by learning and updating the
attributes of the spatiotemporal environmental model.

Besides, Dunbabin et al. addressed the existing sam-
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pling limitations by fusing the sampled data from two
robotic sensor systems |’ . The developed system can
obtain both continuous spatial coverage and temporal
measurements across an entire water body.
Furthermore, researchers have focused on find-
ing sampling locations that can maximize the infor-
mation gain from a field while generating an accurate
environmental model. Kashino and colleagues devel-
oped an optimal sensor deployment strategy for mo-
bile target detection in a spatiotemporal field '*'.
They considered the case that the environment of in-
terest was greater than the size of the detectable re-
gion of all sensors, which is referred to as sparse
coverage. The proposed optimal sensor deployment
strategy efficiently and precisely determines the
movement of the robotic sensors according to the
highest possible likelihood. Quann et al. proposed an
energy-efficient sampling strategy by considering
both spatiotemporal field uncertainty minimization
and energy consumption of the robotic sensor '’
Hitz et al. proposed a novel evolutionary strategy for
planning informative paths, which achieved rich in-
formation from a field while obeying traveling path

budget constraints ‘"

. They also included an adap-
tive replanning method to update paths to retrieve a
lower field estimation uncertainty.

In contrast to model-based approaches, data-
driven approaches do not build environmental mod-
els. Instead,they optimize the sampling locations di-
rectly using historical sampled data. For example,
sparse learning methods, such as compressive sens-
ing and principal component analysis (PCA), can
project a high-dimensional spatiotemporal field onto

[(2925]  The low-dimensional

a low-dimensional space
space can then be used to reconstruct the whole spa-
tiotemporal field with high accuracy. Brunton et al.
proposed a compressive sensing-based sensor place-
ment method for high-dimensional system classifica-
tion "**/. Later, Manohar et al. proposed an optimal
sensor deployment algorithm based on QR factoriza-
tion and PCA. They compared different types of da-

ta-driven reconstruction methods and found that

PCA-based methods can outperform compressive

3! Hence, data-driven meth-

sensing-based methods
ods based on PCA can be utilized to learn a projec-
tion basis from the training data. Singular value de-
composition (SVD) can then be used to tailor un-
necessary information and retain least sampling loca-
tions. The entire spatiotemporal field can be subse-
quently reconstructed based on the observations.

In the present paper, a data-driven approach is
proposed for sensor node deployment and spatiotem-
poral field reconstruction. The proposed approach
deploys sensor nodes that represent the entire spatio-
temporal field near-optimally given a set of historical
sampled data. Observations collected in the deployed
locations can then be used to reconstruct the spatio-
temporal field by learning the sparse representation

mapping using a data-driven approach.
2 Preliminaries

2.1 Model-based Sampling Optimization
Traditionally, the sampling location optimiza-
tionis based on an environmental model that is learn-

[11,12, 26

ed from the training data !, The environment

can be modeled as:
v,[t] = F(A,S,,¢,1),

where ¢/ is an arbitrary point in the two-dimen-
sional field A , matrix A records temporal informa-
tion, matrix S, records spatial information, and ¢ is
the time stamp.

In this manner,the environmental model can be
represented by spatial information and temporal in-

[12]

formation, separately . The spatial information

can be represented by S, and the time-varying coeffi-

cient vector x[ 7],

v,[t] =8S,x[t] +v[1] (1)

where v[t] ~ N (0, R,) is Gaussian white

noise, and R, is its covariance matrix. The temporal

information can be represented by A and the time-
varying coefficient vector x;

x[t+1] = Ax[r] + w[1] (2)

where w[t] ~ N (0, R,) is Gaussian white

noise and R, is the covariance matrix. Note that ma-
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trix A and matrix R can be obtained from sampling
data ")
Then, the effectiveness of the sampling loca-

tionscan be evaluated using control methods. For ex-

models. The prior error covariance matrix of the
state-space model can be computed by the Kalman
filter.

P(t+ 11t] = AP[tIt]A"+ R,

ample, Kalman filter is a suitable control approach where :
for estimating time-varying coefficients in state-space
Plel ] =Pl t-11-P[t] +-1]1S;, x (S, P[t] t-118, +R,)-1S,P[t] t-1] (3)

Then, the effectiveness of the sampling locations
can be evaluated by the maximum eigenvalue of the
prior covariance matrix "', Hence, the model-based
informative sampling strategies seek the deployment
strategy that has minimum largest eigenvalue ;

r ") = max Eigen(P") , (4)
where NV is the deployment strategy containing
the sensor deployment locations, P" indicates the pri-

or error covariance for sampling locationn € N .

2.2 Data-driven Sampling Optimization

In contrast to model-based approaches, data-
driven approaches optimize sampling locations di-
rectly from training data, and not based on models.
PCA is optimal for recovering high-dimensional sig-
nals from unknown contents. It converts correlated
observations into principal components that have
hardly any linear redundancy. The training data ®

train

can be represented as:
o

where WV is the left singular vectors of ®

=P .SV (5)
S

is a rectangular diagonal matrix of singular values of

P

train
train 9

and V is the right singular vectors of ®

train 9 train *

Then, the original signal can be represented on-
ly using first r largest eigenvalues and the singular
vectors ;

d

In this manner, high-dimensional signals can be

vain = @oin =V, + S, -V, (6)
represented by a few sparse representations in the
field. Then, sparse learning approaches can be used
to study the relationship between the compressed sig-
nal and the original signal.

Denote the spatiotemporal field as a high di-
mensional state ¢ € R" , and the spatiotemporal dy-

namics of ¢ can be captured by the low dimensional

observations. The selected observations (y) can be
represented by a measurement matrix C € R™™ |
where r is the number of measurements .
y=C-¢. (7)
Note that ¢ can be sparsely represented by a
principal basis ;
=¥ a (8)
where ¥, € R™ is the principal basis learned

from training data, anda € R".

2.3 Problem Formulation

Mathematically, the sparse signal reconstruction
can be expressed as the projection from a low-di-
mensional observation space to a high-dimensional
signal ;

~ ¢

¢ y:R" R
As r < m , this system is underdetermined.
Hence, there are infinite solutions. Hence, the sam-
pling locations can be optimized, and the mean error
may be utilized to evaluate the reconstructed spatio-
temporal field .
arg min I -E(y) I
Key variables ﬁéed in this paperare defined in
Table 1.
Table 1 Definition of key variables.

Variable Definition

A a two-dimensional environment of interest

A temporal information matrix

c measurement matrix

N deployment strategy

P estimation error matrix

7 a location in the two-dimensional environment
1] high-dimensional spatiotemporal field




INSTRUMENTATION, Vol 6. No 3, September 2019

31

Continued

Variable Definition
® time series training data sampled from spatiotem-
poral field

v principal basis

R. covariance matrix of Gaussian white noise
S rectangular diagonal matrix

Sy the spatial information matrix at location ¢
v right singular vectors

x[t]  time-varying coefficient vector

y observations in the field

3 Proposed Method

3.1 Sparse Learning for Spatiotemporal Recon-

struction

According to Equation (6), high-dimensional
states ¢ € R™ can be represented as linear combina-
tions of r orthogonal eigenmodes /. This low-dimen-
sional state can be learned from training data by
pruning the SVD basis. In this manner, ¢may be de-
composed to produce temporal and spatial coeffi-

[3]

cients "*', and the linear combination of ¢ shown in

Equation (8) can be represented as:

¢ =2 a) (o) (9)

where ¢, is the spatiotemporal field at time i

and ¢,(¢) is the time independent spatial coefficient.
The temporal coefficient a,(t,;) varies with time ¢,.

Next, ¢,

Training data ® = [ ¢, ¢, ¢, ] are given for M

and a, can be computed by SVD.

snapshots. The tailored SVD basis consists of or-

thonormal left singular vectors W, right singular vec-

tors V and the diagonal matrix S. Hence, the train-
ing data can be represented as:

=¥ .S -V (10)

Then, the dimension of the right-hand part of

Equation (10) can be reduced to r according to the

Eckart-Young theorem "'’ .

=" =argmqin H(I)'&\)/HF (11)
s.t. rank( 5) =r,

where || - |, is the Frobenius norm. In this man-

ner, PCA can reduce the dimension of the high-di-

mensional system by using orthogonal projection. In
the present work, rank r indicates the number of ob-
servations in the spatiotemporal field. Hence, infor-
mation in the corresponding r rows of ¥, S, and V
will be extracted as ¥,, S,, and V,, respectively.
Also, the signal can be reconstructed as:

b=V .S -V (12)

Then, a canonical measurement matrix C is used

r

to select critical sampling locations sparsely, and the
corresponding observation y can be simplified as:
y=Ce=1[o,,0,, .0 | (13)
where y = {y,, v,, =+, v,} C {1, 2, -,
mlis the set of indices for the selected sensors. In
this manner, Equation (7) can be used to derive
sampling locations from ¢ efficiently.

Next, the observations in the field, ¢, € ¢,
can be represented as a linear combination of the ba-
sis and the coefficients, according to Equation (9)
and Equation (11) ;

0 =2, Vo, (14)

Observations in the sensor deployment locations

can then be expressed as the linear combination of

the canonical basis and the states according to Equa-
tion (13) and Equation (14) .

=X G =X G X, Y
(15)
Equation (15) can be simplified as;
y=C-V¥, -a (16)
According to Equation (9), ¢ can be recon-
structed by the basis coefficients a:
e=V.a (17)
Usually, only r sensors are deployed in the
field, and only the corresponding readings are ob-
tained, which are denoted as y € R". Hence, ac-
cording to Equation (16) and Equation (17) .
¢ =W,a=V(C¥,) Ty, (18)
where W, e R can be learned through SVD.
Then, given ¥, and y, the reconstruction perform-
ance is dependent on measurement matrix C (C e
R”™ ). C can be optimized by finding the most in-

formative locations in the field, such as the sensor
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deployment locations developed in the following sec-
tion. Thus, the environment gg can be reconstructed

given r observations y, where m > r .

3.2 Data-driven Sparse Sensor Deployment with

Informative Sampling

Optimal sensor deployment locations can guar-
antee the most accurate reconstruction of g; . For this
reason, the locations of the sensor nodes should be
optimized to acquire the most information from point
measurements in sparsely selected sampling loca-
tions. Observations from the sparse sampling loca-
tions can then be used to reconstruct high-dimension-
al states, given the tailored SVD basis. Recall that y
represents the structure of the canonical matrix C,
which gives the sampling locations in the field.
Therefore, y affects the reconstruction performance.
Thus, the optimal vy and its corresponding sampling
locations should provide the most information about
the field.

Choosing a suitable number of sensors in the
field while maintaining a low noise level in the data,
is a challenge. Gavish et al. proved an optimal
threshold,

(SVHT) , that guarantees minimal signal reconstruc-

singular value hard thresholding
tion error ', While ensuring least reconstruction er-
ror, SVHT finds the optimal size of the tailored
SVD basis. However, SVHT cannot find the optimal
sensor deployment locations, since it compresses the
original signal into a latent low-dimensional space,
which cannot be sampled by sensors. Hence, the re-
sult provided by SVHT is regarded as the reconstruc-
tion target. In this manner, the number of sampling
locations can be calculated, and r rows of W, which
correspond to the sensor deployment locations,
should be obtained with maximum information in the
spatiotemporal field.

Given the optimal number of informative sam-
pling locations, it is essential to optimize the deploy-
ment locations. In the present paper, a simulated-an-
nealing-based greedy approach is proposed to opti-

mize the sampling locations. The sampling locations

v can be optimized given the training dataset
(@) -

In Algorithm 1, line 1 initializes the algorithm
by pre-processing the training data, where the train-
ing data can be obtained from the environmental
model. The mean normalization is carried out to fa-
cilitate faster learning. Line 2 learns the training data
by decomposing it into orthonormal matrices using
SVD. Then, r random sampling locations are select-
ed from set L from line 3 to line 7, and they are
transformed into the measurement matrix C, in line
8. Next, the spatiotemporal field is reconstructed ac-
cording to Equation 3.1.10 in line 9 and line 10, and
the reconstruction error ( € ) is calculated in line
11. Last, the algorithm iterates 7 times to optimize

the sampling locations from line 12 to line 22.

Algorithm 1:Sampling location optimization

Input: ®, . ,L,r,m,T
Output; y

1. Init.;

2. V,5,V=sud(®,,) ;

3. y=0;

4. Fori=1,2,3,---,rdo

5: 7i<7ran deL(m) H

6: v=L1v.v];

7. End

8. C, <« canonical(y) ;

9: q)yn‘uin — Cy q),mm 5

10 & W (C,V)-197, .

11: e=MSE(®" ,D) ;

12. Fori=1to T do

13. ;e replacey, € ywithl € L\y ;

14: C,« canonical(’;) ;

15: @7, — D, ;

16: ®" W (C,; V) o,

17: e=MSE(®",d) ;

18 If € < e and rand(0,1) <p then

19: y=v;

20: e=e ;

21 end

22. end
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During the optimization, the algorithm will first
replace a random sampling location (7y, ) with a
random location in set L\y. By doing so, a new
sampling location is tested for obtaining a lower re-
construction error. Then, the new measurement ma-

trix € is calculated, and the corresponding observa-

tions ®” and the reconstruction error € are com-

train
puted. Last, the performance of the new sampling
locations ( 7y ) is evaluated for the optimization. Al-
gorithm 1 accepts better results according to a proba-

(201 This criterion

bility of p to avoid local minima
partially accepts better sampling strategies to jump
out of the local minima, which guarantees the con-
vergence of the reconstruction. Hence, after T times
of optimization, the sampling locations can be opti-
mized, and the reconstruction error will be mini-
mized.

In this manner,r sampling locations selected by
Algorithm 1 can be converted into the canonical
measurement matrix C to reconstruct the field. Given
the observations at the selected sampling locations,

Algorithm 2 can reconstruct the spatiotemporal field.

Algorithm 2. Spatiotemporal Field reconstruction

Input. vy, ¥, Y

Output ; g;

Init. ;

C, < canonical(y) ;
0=C V7, ;

Foreach y € Y do
¢, —VO'y

end

(=) B Y I R

As shown in Algorithm 2, the input of the algo-
rithm is the optimized sampling locationsy, the
trained principal basis ¥,, and the observation ma-
trix Y. Line 1 initializes the variables of the algo-
rithm. Then, the optimized sampling locations are
transformed into the canonical measurement matrix
C,. Next, a basis (®) used for reconstruction is cal-

culated as the product of C, and ¥, in line 3. In

this step, the most important entities of the principal
basis are extracted for the purpose of the spatiotem-
poral field reconstruction. Last, every snapshot in
the observation matrix Y is processed in line 5.

In this way, the spatiotemporal field can be re-
constructed by using the observations from the calcu-
lated sparse sampling locations, and the whole spati-
otemporal field can be reconstructed and predicted u-

sing limited observations.
4 Simulation

This section presents the simulation results of
the spatiotemporal field reconstruction, using a Na-
tional Oceanic and Atmospheric Administration
(NOAA ) dataset. The proposed algorithmis com-
pared with state-of-the-art informative sensor deploy-
ment methods, and the reconstruction performance is
analyzed based on the mean square error (MSE) be-

tween the reconstructed field and the ground truth.

4.1 Experimental Setup

The NOAA dataset covers the southeast Ameri-
cas Seas region, which includes the Gulf of Mexico
and the Caribbean Sea'”’’. The daily sea surface
temperature ( SST) in 2017 was extracted from this
dataset to model the environment.

The performance target and the benchmark al-
gorithms for informative sensor deployment are as
follows ;

- SVHT. SVHT finds optimal thresholds for
the dimensions of the tailored SVD basis that guaran-
tee minimal signal reconstruction error "', SVHT
reduces only the size of the SVD basis, and the re-
sulting tailored SVD basis is used to represent a
higher-dimensional space. Note that SVHT cannot
find the sampling locations because it encodes the o-
riginal signal into a latent low-dimensional space,
which cannot be sampled by sensors. Therefore, the
result generated by SVHT is regarded as the per-
formance target.

- RRC; Rapidly-exploring random cycles
(RRC) is a model-based method that generates sam-

pling locations with the lowest estimation error along
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with a cycled path within the space-filling tree '"'.

The cycled sampling locations can be used to per-
form periodic sampling using a single robot.

« INFO. Informativeness maximization is a
model-based approach that finds sampling locations
with maximum mutual information in the field ‘. Tt
generates a near-optimal sampling set that maximizes
the mutual information of the sampling data.

« RRTPI:. RRTPI is a model-based RRT meth-
od that efficiently solves geodesic-based explora
tion **/. Ten locations with the highest mutual infor-
mation are selected in the spatiotemporal field, and
the exploring tree has a higher probability of explo-
ring areas with higher information gain and efficient-
ly finding the sampling locations with the lowest esti-
mation error.

- DRLTDRLT is a model-based near-optimal

spatiotemporal field estimator -’

. It seeks a near-op-
timal sensor deployment that has both the lowest esti-
mation error and the maximum information. It utili-
zes deep reinforcement learning to improve the effi-
ciency of the field exploring tree.

- Q-DEIMQ-DEIM is a data-driven approach
to optimize the sensor deployment locations for spati-
otemporal field reconstruction *'. Similar to the pro-
posed methods, it uses SVD to learn information
from the training data. Then, it utilizes QR factori-
zation to extract top r essential sampling locations in
the field. The spatiotemporal field is reconstructed
based on the observations obtained from sampling lo-
cations.

The proposed and benchmark algorithms were
implemented using MATLAB andrun on a PC with
4.0 GHz Quad-Core CPU and 16 G memory.

4.2 Simulation Results

Fig.1 presents one ground truth snapshot of the
spatiotemporal field for testing.

Fig. 2 shows the reconstruction results generated
by SVHT. This method has the best reconstruction
results among all methods, as SVHT tailors only in-
formation that is less significant in the SVD basis.

The input signal is compressed and reconstructed via

an orthogonal projection with a tailored SVD basis.
Therefore, a minimal amount of information is lost.
However, although SVHT provides the best recon-
struction results, it cannot be used for scheduling the
sensor deployment locations. The information from
the training dataset has been decomposed to a latent
domain and cannot indicate the effectiveness of the

sampling locations. Hence, the reconstruction of

SVHT is regarded as the reconstruction target.

Fig. 1 Ground truth.

Fig. 2 Reconstruction result generated by SVHT.

Fig. 3 and Fig. 4 present the reconstruction re-
sults provided by RRC and RRTPI. As shown in the
figures, they collect only limited information and
have the worst reconstruction performance among all
methods. The poor performance is because RRC and
RRTPI focus merely on minimizing the estimation
error of the spatiotemporal field. Consequently, they
do not collect enough information to represent the

entire spatiotemporal field. Furthermore, RRC and
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RRTPI lead to a high reconstruction error, which are
39.37 and 64.17, respectively. As these two methods
do not optimize the information gain in the field,

sensor nodes may have been placed in locations that

provide less effective observations.

Fig. 4 Reconstruction result generated by RRTPI.

Fig. 5 and Fig. 6 present the reconstruction re-
sults provided by INFO and DRLT. Both INFO and
DRLT achieve significantly lower reconstruction er-
ror when compared to RRC and RRTPI, as they
maximize the information gain in the field. The
MSEs for the field reconstruction of INFO and
DRLT are significantly reduced, which are 9.08 and
2.59, respectively. INFO focuses on maximizing the
information gain from the field. As a result, INFO
captures more information in the southern Caribbean
Sea and achieves lower reconstruction error than
RRC and RRTPI. However, the reconstruction error
of INFO elevates in the northern Caribbean Sea and

the Gulf of Mexico due to an inadequacy in the qual-

ity/quantity of information captured. In contrast,
DRLT considers both estimation error and informa-
tion gain to generate a more generalized sensor de-
ployment strategy. As shown in Fig. 6, reconstruc-
tion in both southern and northern Caribbean Sea are

superior to that provided by INFO.

Fig. 6 Reconstruction result generated by DRLT.

Fig. 7 and Fig. 8 present the reconstruction re-
sults generated by data-driven methods. It is clear
that the data-driven approaches perform best in re-
constructing a spatiotemporal field, which is also
close to the performance target provided by SVHT.
The reconstruction results provided by the data-driv-
en approaches also indicate that these methods can
restore complex environments, such as the SST over
the Gulf of Mexico and the Northern Caribbean Sea.
Moreover, compared to Q-DEIM, the proposed
method achieves better reconstruction results in resto-

ring complex environments. For example, the pro-
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posed method successfully reconstructs a sudden SST
decrease near east Florida; in contrast, Q-DEIM
does not perform well in this regard. Moreover, the
proposed method significantly reduces the recon-
struction error of the reconstructed snapshot. The
MSEs for the field reconstruction of Q-DEIM and
the proposed method are 0.4761 and 0.2071, respec-

tively.

Fig. 8 Reconstruction result generated

by the proposed method.

Overall, the proposed method achieves the best
performance in reconstructing a spatiotemporal field
using limited sensor nodes.

Table 2 presents the MSE for the spatiotemporal
field reconstruction using the proposed method and
the benchmark algorithms. The proposed method
outperforms both model-driven and data-driven
benchmark algorithms by generating the most accu-
rate spatiotemporal field reconstruction and achieving

the lowest reconstruction error. As a comparison, the

target reconstructionperformance generated by SVHT
is 0.12.
Table 2 MSE of the proposed method and
the benchmark algorithms.

Algorithms MSE
RRC 39.37
RRTPI 64.17
INFO 9.08
RRLR 2.59
Q-DEIM 0.4761

Proposed method 0.2071

Fig.9 presents the reconstruction error during
the optimization of the sensor deployment locations.
As indicated in the figure, the mean square error de-
creases monotonically as the number of iterations in-
creases. Also, the reconstruction error converges af-

ter 1000 rounds of iteration.
25 T T T

0 L L I L
0 200 400 600 800 1000

Number of iteration

Fig. 9 Reconstruction error during training.

5 Conclusion

This paper proposed a data-driven sensor de-
ployment strategy for spatiotemporal field reconstruc-
tion. The proposed method selected the most inform-
ative sampling locations to represent the entire spati-
otemporal field, and then reconstruct the spatiotem-
poral field according to the sampling data. Simula-
tion results showed that the proposed strategy a-

chieved the best spatiotemporal reconstruction per-
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formance among all methods considered in this stud-
y. Also, the reconstruction accuracy of the proposed
method was high compared with the target perform-
ance generated by SVHT. Therefore, the reconstruc-
tion of a spatiotemporal field in the proposed method
could be further improved. In general, model-based
sampling methods may result in reconstruction inac-
curacy when the environmental model cannot ade-
quately express a highly dynamic field of interest;
hence, data-driven approaches are more suitable for

sparse sensor deployment.
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