INSTRUMENTATION, Vol 6. No 3, September 2019 39

Fault Detection Using Negative Selection and Genetic Algorithms
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Abstract : In this paper, negative selection and genetic algorithms are combined and an improved bi-objective optimization scheme
is presented to achieve optimized negative selection algorithm detectors. The main aim of the optimal detector generation technique
is maximal nonself space coverage with reduced number of diversified detectors. Conventionally, researchers opted clonal selec-
tion based optimization methods to achieve the maximal nonself coverage milestone; however, detectors cloning process results in
generation of redundant similar detectors and inefficient detector distribution in nonself space. In approach proposed in the present
paper, the maximal nonself space coverage is associated with bi-objective optimization criteria including minimization of the de-
tector overlap and maximization of the diversity factor of the detectors. In the proposed methodology, a novel diversity factor-
based approach is presented to obtain diversified detector distribution in the nonself space. The concept of diversified detector dis-
tribution is studied for detector coverage with 2-dimensional pentagram and spiral self-patterns. Furthermore, the feasibility of the
developed fault detection methodology is tested the fault detection of induction motor inner race and outer race bearings.

Key words: Detector Coverage; Diversity Factor; Fault Detection; Genetic Algorithm; Negative Selection Algorithm

such as artificial immune systems, evolutionary com-

1 Introduction putation and genetic search, to solve engineering

problems. The biological immune system is very

Fault Detection (FD) has been an active re- . .
complex and consists of many defense layers starting

search field for the last few decades. A variety of FD from the basic psychological instincts to composite

methods have been reported in the literature, rangin . .
p » Tanging networks of immune cells. The immune system has

from model-based methods to intelligent computa- . . -
many interesting features and capabilities such as

tional methods. A detailed review of FD approaches .. . . .
pattern recognition, learning, diversity maintenance,

can be found in [ 1-3]. Model-based techniques em- o o ) )
memory acquisition, distributed detection, and opti-

ploy explicit mathematical models for the design of "

mization'"". The capability of an immune system to

fault detection schemes such as in [ 4-7]. The poten-

distinguish the “self,” i.e., normal cells from the

tial of model-based fault detection methods is major-

ly associated with the availability of accurate mathe- nonself, ™ such as intruders and other pathogens is

matical models. For large, complex systems and in
the presence of uncertain environment, the perform-
ance of model-based FD methods degrades. In order
to cope with shortcomings of model-based methods,
data driven or signal based fault detection approaches

#10) Data driven methods uti-

were also proposed by'
lize large amounts of data related to the process his-
tory/trends and do not require a mathematical
model.

In recent years, rapid increase has been seen in

the development of biologically inspired techniques

implemented primarily by two types of immune cells
namely T-lymphocytes and B-lymphocytes. The T-
lymphocytes are created in the bone marrow and fur-
ther undergo a maturation process in thymus. During
the maturation phase, T-lymphocytes pass through a
negative selection process. Only those that do not
match the self-proteins of the body are released out
to circulate in the blood, while the self-reactive T-
lymphocytes are destroyed.

12]

Forrest'*' presented the negative selection algo-

rithm (NSA) based on the maturation mechanism of
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T-lymphocytes. The development of real-valued
NSA (RNSA) proved a paradigm shift in the re-
search progress of NSA. RNSA was originally pro-

13]

posed by which employed real-valued vector for
self-samples and detector representation. In recent
years, many researchers have contributed to the de-
velopment and improvement of NSA''"*'"/ NSA has
been employed for many applications including a-

nomaly detection'™™ | robotics''” ,

20]

and aircraft
fault detection'*”). Research trend of combining NSA
with other soft-computing techniques including sen-

21 genetic algorithms'**

sor fusion , and particle
swarm learning' ' has been also reported in the lit-
erature. Gao'***
(GA) and Clonal Selection Principle ( CSP)-based

optimized detector generation scheme with the aim to

introduced Genetic Algorithm

minimize the detector overlap. In their method, the
clonal selection principle was utilized to enhance the
number of detectors in the nonself space by creating
clones of previously selected detectors. The major
drawbacks of detector cloning are the lack of diversi-
ty and the presence of a large number of redundant
detectors that result in ineffective nonself space cov-
erage and poor detection performance.

Inspired by the incredible capabilities of genetic
algorithm, the present paper investigates and elabo-
rates on the features of GA for the improvement of
NSA detector generation process. In contrast to'*’
implementation of this novel approach is independent
of faulty behavior patterns that only require the
healthy ( fault-free) behavior of the system for the
generation of GA optimized detectors. In the pro-
posed approach, negative selection and genetic algo-
rithms are combined and an improved bi-objective
optimization method is incorporated to achieve opti-
mized detectors. A novel diversity factor approach-
based detector generation method is presented to ob-
tain optimal, diversified detector distribution across
the whole search space with reduced number of de-
tectors. Furthermore, the nonself space coverage of
the proposed scheme is examined with 2-dimensional

(2D) pentagram and spiral patterns. In addition, the

fault detection performance of the proposed scheme
is tested on inner race and outer race bearing faults
of a motor. The healthy motor stator current signal is
utilized for the generation of the GA optimized NSA
detectors, and the resultant optimized detector set is
used for fault detection.

The remaining paper is organized as follows;
Section 2 describes the preliminary background of
the negative selection algorithm and NSA detector
optimization, and presents the problem formulation
of bi-objective optimization-based NSA detector gen-
eration problem. In section 3, the proposed bi-objec-
tive genetic algorithm-based optimized detector gen-
eration method is presented, which particularly focu-
ses on the diversity factor computation and the im-
proved fitness function evaluation. Section 4 and 5
cover the computer simulation and the results where
2 dimensional (2D) self-pattern analysis and bearing
fault detection examples are presented, respectively.

Section 6 concludes the paper.
2 Preliminary Background

In this section, first an overview of the termi-
nologies and the mathematical foundation of the
primitive negative selection algorithm (NSA) is pro-
vided, followed by a brief discussion on the NSA
detector generation process as an optimization prob-
lem. Furthermore, the limitations of the single objec-
tive optimization criterion selection in the detector
generation process are explained, and finally the bi-
objective optimization-based NSA detector genera-

tion problem is formally defined.

2.1 Overview of Negative Selection Algorithm
(NSA)

The computational foundation of the negative
selection algorithm is described now. A dataset re-
presenting the normal behavior of the system is gath-
ered, known as the self-data. Afterwards, the candi-
date detectors are randomly generated and compared
with the self-data. The detectors that do not match
any sample of the self-data are retained and the re-

maining others are discarded.
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Given “M” number of self-samples and “N”
number of candidate detectors, let O, = [x}, x}-
xp] and o, = [wi, Wy w) ]
sample and a candidate detector, respectively, where
i=1,2--M,j=1,2--N. Q is their common

represents a self-

order and x e R, w e R are real numbers. The matc-
hing degree between self-sample and candidate de-
tector can be computed based on the Euclidean dis-

tance, according to

4 2
d=10;-o|= |3 (x, - w) (1)

Consequently,d is compared with a predefined
threshold value A (i.e., detector radius r;). If d >

3 ’

A, detector ‘o,

*0,’. A candidate detector becomes a valid detector

fails to match the self-sample

and part of the Detector Set, if and only if, it does
not match any self-sample. On the other hand, if d <
A, it is considered that the detector ‘o0;” matches the
self-sample ‘ O,’ and it is thus rejected. After a cer-
tain number of valid detectors are generated through
the above mentioned procedure, these detectors are

in turn used to detect anomaly in fresh samples.

2.2 Optimized NSA Detector Generation

Given an “M” number of self-samples, the
goal of NSA is to generate detectors that cover the
maximal nonself space with lesser number of detec-
tors. In the NSA detector optimization problem, the
decision variable is the center location of the detector
o= [w, wy-w,] where j = 1, 2 --- N. The de-
tector location is optimized to ensure efficient non-
self space coverage, employing minimum overlap
between detectors as the optimization criterion. To e-
laborate, suppose that for a candidate detector cen-
tered at o; with arbitrary radius ¥, O, be the location
of the nearest self-sample with self-radius R,, as
shown in Fig. 1. The detector’ s distance from its

nearest self-sample can be defined as,
N
‘Ok_oj‘zmiin‘()i_oj‘ (2)
and its maximal radius can be defined as,
r=10,-0/-R (3)

where

and

Q . . 2
‘O[—oj‘= ](xq—w;)
N iz

The nearest-self distance depends upon the de-
tector’ s center o;, which has vital importance in the
formulation of the objective function. For any detec-
tor o; with detector radius ¥, if there is self-sample
O, of self-radius R', such that |0, - o,| <R’

detector o; overlaps with self-sample O, and thus be-

then

b
comes an invalid detector. Therefore, the maximum
radius of a valid detector is restricted by the location

of its nearest-self sample, as illustrated in Fig. 1.

Generally, it is suggested that the detector radius

[22]
’

rjzmoax\Ok—oj\—Rk (4)

7

should be selected as

Equation (4) describes the possible maximal
detector radius for a valid detector centered at loca-
tion o;. In order to provide maximum nonself cover-
age with few numbers of detectors, the detector radi-
us should be as large as possible. As the objective is
to maximize the detector radius, equation (4) de-
fines the basic objective function and it depends on
the radius of nearest self-sample ( generally fixed )

and the nearest self-distance.

Valid

Maximal radius ' Detectors

N

r! \\

Nearest-Self
Distance

Self Samples
® )
®

Candidate Detecta.r"y-.
\Centre (0)) P 4

Sm=

Fig. 1 Relationship between nearest-self

distance and detector radius.
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For each detector to be valid, it must satisfy the con-
straints :

10, =0, |= R Vi, Vj (5)

Also each Q-dimensional detector must satisfy

the real-valued boundary constraints as described by,

w/iower Su/l Swlllpper

lower j upper
wy,"" <wh <w)

(6)

lower / upper .
wo"" <w, <wy) V)

2.3 Bi-objective Optimization Problem Formula-
tion
Previously, clonal selection and single objec-
tive-based optimization methods were presented to a-
chieve the maximal nonself space coverage; howev-
er, detector cloning process results in the generation
of redundant similar detectors and inefficient detector
distribution in the nonself space. The aim of optimal
NSA detector generation techniques is maximal non-
self space coverage with reduced number of detec-
tors, and at the same time covering the maximum
types of anomalies. To address the aforementioned
objectives and shortcomings of existing methods,
there is a need to develop an effective detector gen-
eration and distribution strategy. In contrast to single
optimization criterion or incorporation of multi-level
optimization techniques, a bi-objective optimization
method is suggested, focusing on minimizing the de-
tector overlap and enhancing the detector diversity.
The problem definition of bi-objective optimization-
based NSA detector generation may be formally stat-
ed as follows:
Optimization goal
“Maximal nonself space coverage”
Step;
“Determine the optimal detectors”
0j (center location) and rj ( influence re-
gion)
Bi-objective criteria;
Minimization of detectors’ overlap
Maximization of detectors’ diversity

factor

The goal is to obtain diversified detectors across
the whole search space with least number of optimal-
ly distributed detectors. The in-build diversification
capabilities will limit the concentration of the genera-

ted detectors within a limited nonself region.
3 Proposed Method

In the present work, a bi-objective GA optimi-
zation-based NSA detector generation method is de-
veloped. To ensure efficient distribution of the detec-
tors in the nonself space, the detector set should
cover maximum number of anomalies ( diversified
nonself space coverage) and the detector overlap
should be minimized. Hence, the present optimiza-
tion goal is twofold: determination of the optimal o,
and  to achieve 1) diversified nonself space cover-
age, and 2) minimal detectors’ overlap, simultane-
ously. In addition, the developed fault detection
scheme is independent of fault patterns and requires
only the knowledge of the normal behavior of the
system to generate optimized NSA detectors. For the
detector set generation, in contrast to classical gener-
ation-elimination strategy, GA optimized detector
generation method is incorporated, as shown in Fig.

2. Its details are discussed next.

3.1 Bi-objective Optimization Criteria

The detector generation method focuses on non-
self coverage with minimum number of detectors that
are highly diversified to cover maximum types of a-
nomalies. The detector generation mechanism is
based on determination ofthe optimal detector center
to maximize the detector influence region ( radius)
and the diversity aspect, with the constraint of self-
matching detector prohibition. The proposed diversi-
ty factor-based fitness value evaluation enforces de-
tector diversification across the whole search space.
Fig. 3 illustrates the proposed bi-objective fitness
value evaluation scheme based on the following cri-
teria:

1.Detector overlap minimization

2.Diversity factor maximization
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Fig. 2 GA optimized negative selection algorithm.
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Fig. 3 Bi-objective fitness value evaluation scheme.

The objective (i) is achieved by the maximiza-
tion of (4), which gives the initial fitness value of
the candidate detector ‘f;” , and objective (ii) is a-
chieved by the maximization of (7), whicht gives

the updated fitness value ‘f’

of 8(10, —o.|-R"
maxfj* =max£=max 9, j‘ (7)
0 0; S. 0; Si
' D
5= 24, (8)
=1

where f;, fj* and s; are the initial fitness value,
updated fitness value and similarity factor value, re-
spectively. The & is the scaling factor, which con-
trols the influence of the diversity factor on the upda-
ted fitness value. The proposed method involves 3
steps: First, the knowledge of the previously stored

optimized detector set is used for calculation of the

diversity factor (1/ s;) of the candidate detector,
which utilizes the distance-based metrics & for simi-
larity assessment of the candidate detectors. After-
wards, initial fitness value based on r maximization
is obtained using (4). Finally,the initial fitness val-
ue and the similarity factor are used to calculate the
final updated fitness value of the candidate detector
using (7). The detailed discussion on diversity fac-
tor computation for an arbitrary detector generation

scenario is presented next.

Fig. 4 Arbitrary detector distribution in 2D nonself space.

Table 1 Similarity values of candidate detectors.

gy j=1 j=2 j=3
1=1 0.8600 0.8084 0.5970
i=2 0.7091 0.8411 0.6248
i=3 0.7218 0.7555 0.7349
i=4 0.7210 0.6964 0.8090
i=5 0.5601 0.5106 0.7666
i=6 0.5693 0.4132 0.8134
3.2 Diversity Factor Computation
Consider a 2-dimensional (2D ) region of

space, with self and nonself space segments, as
shown in the Fig. 4. Suppose that, D number of de-
tectors have already been generated and selected
through GA-based detector generation technique, de-
noted by MD ( matured detectors). The self and
nonself space distribution along with the location and

influence region (radius) of matured detectors is il-
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lustrated in Fig. 4. In order to generate another ma-
ture detector, a population of candidate detectors
(CD) is generated. Fig. 4 shows a candidate detec-
tor population (size, S = 6) with their potential in-
fluence region. The potential influence region de-
pends on the radius of the detector that is computed
using equation (2) and (3). In the proposed bi-ob-
jective fitness evaluation method, to ensure the em-
ployment of diversity aspect-controlled generation of
detectors, each candidate detector is assigned a simi-
larity and diversity factor value that is based on the
distance-based similarity metric of the candidate de-
tector and the previously stored matured detectors.
The similarity values of all 6 candidate detectors
in regard to 3 matured detectors are given in Table 1.

The similarity value depends on the phenotypic dis-

tance between the individual candidate detector and
the matured detector. The relationship between the
phenotypic distance and the similarity value is math-

ematically defined as,

d;
1 -— if d; <d,,

9
0 it d,=d 5

(not a valid detector)

where d,,, is the distance between the upper and
lower limits. The similarity factor value for an indi-
vidual i is defined as the sum of the individual simi-
larity values (&) between ith candidate detector and
all other ‘D’ number of matured detectors, as given
in (8). Table 2 lists the similarity factor values, ini-
tial fitness value and the updated fitness values of all

the candidate detectors.

Table 2 Comparison of initial fitness value, similarity factor and updated fitness value of candidate detectors.

Candidate Detector # Initial fitness value ( f;)

Similarity factor (s;) share )

Updated firness value ( f

i=1 0.189
i=2 0.225
i=3 0.123
i=4 0.177
i=5 0.322
i=6 0.191

2.2654 0.117
2.1751 0.146
2.2122 0.078
2.2264 0.112
1.8373 0.247
1.7959 0.150

The evaluation process of candidate detectors is
based on the updated fitness value that considers both
the largest radius and the most diversified nature of
the detectors. The proposed method assigns lower fit-
ness values to the candidate detectors # 3 and #4 and
the highest fitness value to the candidate detector #
5. The resultant updated fitness values in Table 2
support the intuitive candidate detector ranking based
on bi-objective evaluation criteria. The method in-
tends to obtain an appropriate collection of diverse
detectors that attempt to locate themselves far apart
from matured detectors (i.e., already selected).

In essence, with the incorporation of similarity
factor, the amount of reduction in fitness value of
the candidate detector is proportional to the sum of

its phenotypic resemblance with other matured detec-

tors. In other words, the higher fitness value of can-
didate detector represents its high diversity aspect.
The role of the diversity factor is to reduce the fit-
ness of those candidate detectors who have a large
number of close relations ( phenotypic) within the
detector population. This limits their chance to be-
come part of the next generation and ultimately their
selection as the new matured detector. In summary,
the proposed bi-objective optimization method en-
courages the exploration of diversified detectors and

generates an optimally distributed detector set.

3.3 GA Implementation

The architecture of proposed GA-based opti-
mized detector generation method is shown in Fig. 1.
It utilizes the bi-objective evaluation function de-

scribed in (7). This section describes the employed



INSTRUMENTATION, Vol 6. No 3, September 2019

45

GA operators and stepwise implementation details of
the algorithm.

First, a penalty function is incorporated with
the aim to reduce the fitness value of an individual in
case the individual violates one or more constraints
(5) and (6). The amount of reduction in the fitness
value is generally proportional to the number of vio-
lations. The proposed genetic algorithm configuration
employs simple roulette wheel or fitness proportion-
ate selection scheme. With this approach, the proba-
bility of selection is proportional to an individual’ s
fitness. A parameter P, is defined, which decides the
probability of the bit exchange. For the multi-param-
eter problem ( multiple unknowns ), generally the

crossover cut point (¢, ) does not lic between pa-

point
rameters but within a parameter. However, in the
problem under consideration, the binary sub-strings
are concatenated to form a chromosome of length L,
and the crossover points can be at any locus numbers
between 1 and L-1. To implement the bitwise muta-
tion with each new generation, the whole population
is swept with every bit position in every string visited
and very occasionally (with a small probability P,,)
a ‘1’ is flipped to a ‘0’ and vice versa. The proba-
bility of mutation P,, is usually very small. With the
implementation of elitism operator, the progression
of elite member within the population is ensured.
The elite member is not only selected but also en-
sures that its copy is not disrupted by crossover or
mutation.

The termination criteria opted in the proposed
GA architecture is the maximum number of genera-
tions. After a pre-specified number of generations,
an optimized matured detector is generated. The cen-
ter location and the radius of the optimized detector
are stored in the matured detector set. Furthermore,
the matured detector set is included in the self-sam-
ple set, and the updated self-sample set is used for
generation of the next matured detector. The process
is repeated until the required numbers of matured de-
tectors are generated. The inclusion of matured de-

tectors and the incorporation of updated self-sample

set ensure minimum overlapping between the previ-
ously stored matured detectors and the future detector

candidates.
4 Simulation and Results

In order to evaluate the performance ofthe pro-
posed genetic algorithm-based NSA detectors, simu-
lations are performed. The simulations involved two
types of examples including 2D pentagram and spiral
self-patterns. The simulation and results are dis-

cussed in this section.

4.1 2D Self-patterns and Simulation Parameters

To observe the detector coverage, it is consid-
ered appropriate to test the developed algorithm with
2 dimensional (2D) patterns. In 2D pattern analy-
sis, the self-space is represented by data points with-
in regular-shaped pentagram and spiral, as illustrated
with dark circles in Fig. 5 and Fig. 6, respectively.
For the generated self-space, GA optimized NSA de-
tectors are generated using the developed scheme.
For the 2D pattern detector coverage of both penta-
gram and spiral-based self-patterns, the order of the
detectors is defined as Q = 2. Table 3 lists the pa-

rameters used in the simulation.

Table 3 List of Parameters for 2D pattern analysis.

Simulation Parameter =~ Symbol  Pentagram Spiral
Substring length I8 5 8
Substring length L, 5 8

Mutation probability P, 0.1 0.2

Crossover probability P, 0.8 0.8

No. of crossover points Cpoint 3 4
romof g =1 W Lower -2 -3
Tin 0f g = 2 Wl ower -2 -7
T Of g = 1 W iUpper 1.5 6
Tour Of ¢ = 2 Wotpper 1.5 3
Population size S 20 20

4.2 Detector Coverage

For the pentagram case, the self-space consists
of M = 450 self-samples with self-radius of r*/ =
0.05. With the implementation of the developed ap-

proach, N = 15 GA optimized detectors are genera-
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ted. As it is evident from Fig. 5, that GA optimized
detectors show good diversified coverage and pro-

vides almost 90% of nonself space coverage.
1.5

0.5

05

-2 -1.5 -1 -0.5 0 05 1 1.5

Fig. 5 Detector coverage with pentagram self-pattern.

Fig. 6 Detector coverage with spiral self-pattern.

For spiral self-space pattern, a total of M = 220

self-samples with self-radius of r*/'=

0.1 are genera-
ted. With the implementation of the developed ap-
proach, N = 100 optimized detectors are generated.
Depending on the complex nature of the self-space,
an increase in the number of detectors could be ob-
served. In addition, GA optimized detector set con-
sists of few small-sized detectors, as illustrated in
Fig. 6. It is worthy to note that the proposed ap-
proach is intelligent enough to consider the nature of
the self-space and provide optimal coverage with di-

versified detector set.

5 Bearing Fault Detection

Induction motors are commonly used in a wide
range of applications and are often subjected to dif-
ferent types of faults. Bearing faults contribute a ma-
jor share (40%) of the total faults of the motors"*’.
Bearing faults occur due to inner race, outer race or
ball defects. In order to investigate the fault detection
performance of the proposed optimized NSA detector
generation scheme, it is tested under inner race and
outer race bearing faults.

In fault-free induction motors, the stator current
consists ofthe 1st and 3rd harmonics whose ampli-
tude depends on the motor rating and the load. Hus-
sein'”"' investigated that the effect of bearing fault
can be modeled as an additional bearing current
component in the normal (healthy motor) stator cur-
rent. This faulty current component contains frequen-
cy harmonics. In case of outer and inner race bearing
faults, the stator current contains this additional cur-

rent due to the harmonics calculated by the following

f = [N”HI -, (B)} (14)

equations ;

2 b,
(N, cos(B)
A S IR BID

where N, is the total number of balls, b, is the
ball diameter, b, is the ball pitch diameter, and B is
the contact angle of the ball with the races. A de-

tailed description can be found in'*" >

5.1 Collection of Self-samples

The proposed fault detection approach is inde-
pendent of the fault types and patterns, and for the
optimized NSA detector generation only the healthy
behavior of the system (i.e., motor stator current)
is required. In the present study, ACS7I2ELCTR
current sensor module is employed for the measure-
ment of the stator current, which has a 5A input cur-
rent range and a 185mV/A sensitivity. The current
sensor produces a proportional signal with an accura-
cy of 1.5% and 5V maximum output. The feature

signal time series of the current signal of a healthy
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motor is shown in the upper portion of Fig. 7 (a).
Initially, a total of 2000 sampled data points of-
the healthy motor stator current are collected. Subse-
quently, these sampled points are segmented into
non-overlapping frames of width Q. With the same
healthy motor current sampled points and with differ-
ent window-widths, two sets of frames were pro-
duced; i.e., by setting Q = 8 and 10. By setting Q
= 8, a total of 2000/8 = 250 frames were pro-
duced. By setting Q = 10, a total of 2000/10 = 200
frames were produced. These two sets of self-sam-
ples (Self-sample Set 1 and Self-sample Set 2) were
utilized in the two sets of experiments as presented

next.

5.2 GA Optimized Detector Set Generation

After the collection of the self-sample sets, op-
timized NSA detectors are generated. In this exam-
ple, for each self-sample set ( Self-sample Set 1 and
Self-sample Set 2) respective detector set ( Detector
Set 1 and Detector Set 2) is generated. Each pair of
self-sample and detector set consists of real-valued
vectors of pre-defined vector size. For Self-Detector
Pair 1. vector size of each self-sample is Q0 = 8 and
self-radius #* = 0.01, and detectors of the same
size, i.e., Q = 8 are generated. Similarly, for Self-
Detector Pair 2 vector size of each self-sample is O
= 10 and self-radius /= 0.03, and detectors of the
same size, i.e., Q = 10 are generated. For the im-
plementation of the algorithm, the list of parameters
used for the generation of two detector sets is given
in Table 4.

5.3 Testing and Fault Detection Results

In the validation phase, a total of 2000 fresh
sampled data points are collected. This new valida-
tion sampled data consists of faulty current (inner/
outer bearing fault) sampled values and normal
(fault-free ) current sampled values. Subsequently,
these sampled points are segmented into non-overlap-
ping frames of width Q. With the same validation
data sampled points and with different window-

widths, two sets of frames were produced; i.e., by

setting O = 8 and 10.

By setting O = 8, a total of 2000/8 = 250 test
frames are produced, each representing a real-valued
test-sample vector. The beginning 125 test-samples
are faulty (1000" sample number) and the remai-
ning 125 samples represent the normal behavior of
the motor, as shown in Figure 7. By setting Q =
10, a total of 2000/10 = 200 frames are produced.
The beginning 100 test-samples ( 1000™ sample num-
ber) represent faulty behavior and the remaining 100
test-samples are normal ( healthy ) samples, as
shown in Fig. 7 and Fig. 8 for the inner race and the
outer race bearing faults, respectively. These two
validation sets of test-samples are utilized to examine
the fault detection performance of Detector Set 1 and
Detector Set 2, respectively.

For fault detection in the induction motor, test
samples are matched with GA optimized detectors.
The test-sample and detector matching is based on a
distance metric and is mathematically described as
follows ;

Let d be the distance between the i"-Test sam-
ple (T,) and the jth-Detector (o,, ;) ,

T= (4, feoety] o= [, whooo i)

0
d;= 1T, = o)l= [ 2 (0 ~w)’ (16)
o

If d;> r for any jth-detector (j = 1,2,...,N) ,
it indicates that the i"-Test sample is faulty.

With the aforementioned detector-test sample
matching criteria, the bearing fault detection is per-
formed on the test samples. The fault detection re-
sults are shown in Fig. 7 (a, b) and Fig. 8 (a, b)
for the inner race (Q = 8, 10) and the outer race
(Q = 8, 10) bearing faults, respectively. For per-
formance assessment of the developed method fault
detection rate ( FDR) and false alarm rate ( FAR)
are used. Let A and B denote the total misdetected
healthy frame and the total detected faulty frames,
respectively.

FDR = B/Total faulty frames

FAR = A/ Total healthy frames
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The FDR and FAR for the inner and outer race combination, simulations are carried out and the

bearing faults and with variation in the frame win- effect of the window-width variation on FDR and

dow-width (order Q) are listed in Table 5. For each FAR is studied . The developed fault detection
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scheme has the ability to effectively indicate the
faulty behavior ( bearing fault) with good fault de-
81.6 % (inner race fault) and
75.2% (outer race fault) and excellent FAR of 0%

in all the cases. In the bearing fault detection exam-

tection rate, i.e.,

ple, the appropriate segment boundary or window-

width is chosen on the basis of improved fault detec-

1000 1200 1400 1600 1800 2000

Outer Race Bearing fault detection with order Q =

an appropriate window-width should be selected. A
very small window-width may not be able to capture
the significant patterns to distinguish normal and
faulty system behavior. Similarly, a very large win-
dow-width may result in false alarm and lead to in-
crease in the computational complexity.

Table 4 List of Parameters for bearing fault detection.

tion accuracy using trial and error method. In the Parameter Symbol Value
present study, the best fault detection performance is Substring length 1,(g=1,2,,0) 6
achieved with Q@ = 10. In addition, the determina- Lower bound (ymin) w“"(g=1,2,-,0) 3
tion of the appropriate window-width also depends Upper bound (ymax) w™(g=1,2,,0) 3
on the signal dynamics or the distribution of the fre- L
o ) o Population size N 30
quency contents within the signal. For periodic signals
. . o Mutation probability P, 0.2
with generally slow dynamic variations, constant or
. . . Crossover probability P 0.8
uniform windowing methods are recommended.
. . . of i ” 4
However, depending on the system behavior, No. of crossover points Croin
Table 5 Bearing Fault Detection Analysis.
No. of GA Total Total Fault
o . . False Alarm
Order Optimized NSA Misdetected Detected Faulty Detection
Fault Rate
Detectors Healthy Frames Frames Rate
N A B FDR FAR
3 60 0 102 81.6% 0%
Inner race
10 60 0 74 74% 0%
8 60 0 94 75.2% 0%
Outer race
10 60 0 66 66% 0%
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6 Conclusion

In this paper, a novel fault detection scheme
was presented combining genetic and negative selec-
tion algorithms. In the proposed approach, the maxi-
mal nonself space coverage was achieved through bi-
objective optimization criteria including minimization
of the detector overlap and maximization of the de-
tector diversity factor. The main aim of bi-objective
optimal detector generation technique was maximal
nonself space coverage with reduced number of di-
versified detectors. In the proposed methodology, a
diversity factor was utilized to obtain a diversified
detector distribution in the nonself space. The devel-
oped scheme was tested with inner and outer race
bearing fault detection, and the detector nonself
space coverage was studied with 2D self-pattern a-
nalysis. The simulation results supported the claimed

fault detection capabilities of the developed method.

References

[1] (2003). A review of
process fault detection and diagnosis Part I, II, III.
Comput. Chem. Eng. 27, pp. 293-346.

Henriquez, P. (2014 ). Review of Automatic Fault

Venkatasubramanian, V.

Diagnosis System Using Audio and Vibration Signals.
IEEE Trans. Syst. Man Cybern. Syst. 44(5), pp.
642-652.

Hekmat, S. (2016). Real Time Fault Detection and
Isolation: A comparative study. Int. J. Compu. Appl.
134(6) , pp. 8-15.

Gajanayake, C. (2013). Sensor fault detection, iso-

(3]

lation and system reconfiguration based on extended
Kalman filter for induction motor drives, IET Electr.
Power Appl. 7(7) , pp. 607-617.

Kawashima, H. (2003). A Multi-Model Based Fault

Detection and Diagnosis of Internal Sensor for Mobile

(5]

Robot. Conf. on Intelligent Robots and Systems Las
Vegas. pp. 3787-3792.

Arogeti, SA. (2009). Fault Detection and Isolation
in a Mobile Robot Test-bed. IEEE/ASME Int. Conf.

[6]

on Advanced Intelligent Mechatronics, Suntec Con-
vention and Exhibition Center Singapore. pp. 398-
404.

(7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Tabbache, B. (2013). Virtual-Sensor-Based Maxi-
mum-Likelihood Voting Approach for Fault-Tolerant
Control of Electric Vehicle Powertrains. /IEEE Trans.
Veh. Technol. 62(3) , pp. 1075-1083.

Yu, C. (2008). A Kernel-Based Bayesian Classifier
for Fault Detection and Classification. World Congr.
on Intelligent Control and Automation. 1, pp. 124-
128.

Chen, YM. (2002). Neural networks-based scheme
for system failure detection and diagnosis. Math.
Comput. Simul. 58, pp. 101-109.

Jain, AA. (2000). A neural network based actuator
fault detection and diagnostic scheme for a SCARA
manipulator. IEEE Int. Symposium on Intelligent Con-
trol. pp. 297-302.

Castro, LND. (1999). Artificial Immune Systems:
Part I- Basic Theory and Applications. Universidade
Estadual de Campinas, Dezembro de, Tech. Rep
210, pp. 1-15.

Forrest, S. (1994). Self-Nonself Discrimination in a
Computer. I[EEE Symposium on Research in Security
and Privacy, Los Alamitos, CA. pp. 202-212.
Gonzalez, L. (2003). A randomized real-valued neg-
ative selection algorithm. Proceedings of the 2nd In-
ternational Conference on Artificial Immune Systems
(ICARIS). LNCS, Edinburgh, UK, Springer-Verlag.
pp- 261-272.

Gonz, FA. (2004). Anomaly Detection Using Real-
Valued Negative, Genet. Program. Evolvable Mach. 4
(4), pp. 383-403.

Laurentys, CA. (2010). Design of an Artificial Im-
mune System for fault detection: A Negative Selec-
tion Approach. Expert Syst. Appl. 37(7), pp. 5507-
5513.

Silva, GC. (2012). Immune inspired Fault Detection
and Diagnosis: A fuzzy-based approach of the nega-
tive selection algorithm and participatory clustering.
Expert Syst. Appl. 39(16) , pp. 12474-12486.

Abid, A. (2018). Layered and Real-valued Negative
Selection Algorithm for Fault Detection. IEEE Syst. J.
12(3), pp. 2960-2969.

Gao, XZ. (2013). A study of negative selection al-
gorithm-based motor fault detection and diagnosis.
Int. J. Innov. Comput. Inf. Control. 9(2), pp. 875-
901.

Canham, R. (2003). Robot Error Detection Using an



INSTRUMENTATION, Vol 6. No 3, September 2019

51

Artificial Immune System. NASA/Dod Conf. on
Evolvable Hardware. pp. 199-207.

[20] Dasgupta, D. (2004). Negative Selection Algorithm
for Aircraft Fault Detection. Artif. Immune Syst.
Springer Berlin Heidelb. pp. 1-3.

[21] Abdel, M. (2009). A Hybrid Intelligent System for
Fault Detection and Sensor Fusion. Appl. Soft Com-
put. 9, pp. 415-422.

[22] Abid, A. (2020). Multidomain Features-based GA
Optimized Artificial Immune System for Bearing Fault
Detection. IEEE Trans. Syst. Man Cybern. Syst., 50
(1), pp- 348-359.

[23] Gao, XZ. (2010). Multi-Level Optimization of Neg-
ative Selection Algorithm Detectors with Application
In Motor Fault Detection. Intell. Autom. Soft Comput.
16(3), pp. 353-375.

[24] Ye, L. (2013). An Artificial Immune Classification
Algorithm based on Particle Swarm Optimization. J.
Comput. 8(3) , pp. 772-778.

[25] Aydin,I. (2010). Artificial Immune classifier with
Swarm Learning, Eng. Appl. Artifi. Intell. 23, pp.
1291-1302.

[26] Schoen, RR. (1995). Motor bearing damage detec-
tion using stator current monitoring. /IEEE Trans. Ind.
Appl. 31, pp. 1274-1279.

[27]  Hussein, NA. (2012). 3-phase Induction Motor
Bearing Fault Detection and Isolation using MCSA
Technique based on neural network Algorithm. J.
Eng. Dev. 16(3) , pp. 175-189.

[28] Blodt, M. (2008). Models for Bearing Damage De-
tection in Induction Motors Using Stator Current Mo-
nitoring. I[EEE Trans. Ind. Electron. 55 (4), pp.
1813-1822.

Authors’ Biographies

Anam ABID received her Bachelor’ s
degree in electrical engineering from
the University of Engineering and
Technology, Peshawar, Pakistan, and
the Master’ s degree in electrical engi-

neering from the National University of

N | Sciences and Technology, Pakistan.
She is currently pursuing her Ph.D. degree in Mechatronics
and holds a faculty position with the Department of Mecha-

tronics Engineering at the University of Engineering and

Copyright: © 2019 by the authors.

Technology, Peshawar. Her research interests include fault

detection, control systems, machine learning, and signal pro-

cessing.

Zia Ul HAQ received his Bachelor’ s
degree in agricultural engineering and
Master’ s degree in soil and water engi-
neering from NWFP University of Engi-
neering and Technology, Peshawar,
Pakistan, and Ph.D. degree from the U-
niversity of Southampton, UK, in
1996, 203, and 2009, respectively. Currently, he is an As-
sistant Professor with the Department of Agriculture at the U-
niversity of Engineering and Technology, Peshawar, Paki-
stan. His research interests include soil and water engineering,

irrigation, and intelligent computing methods.

Muhammad Tahir KHAN received his
Bachelor’ s degree in mechanical engi-
neering from NWFP University of Engi-
neering & Technology, Peshawar, Pa-
kistan, Master’ s degree in mechatron-
ics from University of New South
Wales, Sydney, Australia, and Ph.D.
degree from the University of British Columbia, Vancouver,
BC, Canada, in 1997, 1999, and 2010, respectively. He was
a postdoctoral fellow with the Industrial Automation Laborato-
ry at the University of British Columbia, Vancouver, BC,
Canada for 2 years until January 2012. Currently, he is a Pro-
fessor with the Department of Mechatronics at the University
of Engineering and Technology, Peshawar, Pakistan. His re-
search interests include robotics, and intelligent control sys-

tems.

This article is licensed under a Creative

Commons Attribution 4.0 International License (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).



