76 INSTRUMENTATION, Vol 6. No 3, September 2019

End-to-End Multiview Gesture Recognition for
Autonomous Car Parking System

Hassene Ben AMARA', Fakhri KARRAY'
(1.Cenire for Pattern Analysis and Machine Intelligence (CPAMI) , Electrical and Computer Engineering, The University of Waterloo)

Abstract: The use of hand gestures can be the most intuitive human-machine interaction medium. The early approaches for hand
gesture recognition used device-based methods. These methods use mechanical or optical sensors attached to a glove or markers,
which hinder the natural human-machine communication. On the other hand, vision-based methods are less restrictive and allow
for a more spontaneous communication without the need of an intermediary between human and machine. Therefore, vision ges-
ture recognition has been a popular area of research for the past thirty years. Hand gesture recognition finds its application in many
areas, particularly the automotive industry where advanced automotive human-machine interface (HMI) designers are using ges-
ture recognition to improve driver and vehicle safety. However, technology advances go beyond active/passive safety and into
convenience and comfort. In this context, one of America’s big three automakers has partnered with the Centre of Pattern Analy-
sis and Machine Intelligence (CPAMI) at the University of Waterloo to investigate expanding their product segment through ma-
chine learning to provide an increased driver convenience and comfort with the particular application of hand gesture recognition
for autonomous car parking. The present paper leverages the state-of-the-art deep learning and optimization techniques to develop
a vision-based multiview dynamic hand gesture recognizer for a self-parking system. We propose a 3D-CNN gesture model archi-
tecture that we train on a publicly available hand gesture database. We apply transfer learning methods to fine-tune the pre-trained
gesture model on custom-made data, which significantly improves the proposed system performance in a real world environment.
We adapt the architecture of end-to-end solution to expand the state-of-the-art video classifier from a single image as input ( fed by
monocular camera) to a Multiview 360 feed, offered by a six cameras module. Finally, we optimize the proposed solution to
work on a limited resource embedded platform ( Nvidia Jetson TX2) that is used by automakers for vehicle-based features, with-
out sacrificing the accuracy robustness and real time functionality of the system.
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with other humans. Gesture is a communication

channel in the field of Human Machine Interface
1 General Concepts _
(HMI) , which has many recent advancements: the

1.1 Introduction

Nowadays, the most natural and intuitive means
of communication for human-machine interaction is
voice, thanks to the recent advances in the areas of
automatic speech recognition and natural language
processing. However, humans are a visual species by
nature, which means that the most human-to-human
communication we use is gesture, which can be
manifested in our regular voluntary gestures and in
our subconscious body language to convey most of

the meaning of what we say while communicating

hand gesture can be used to point (e.g., to replace
the mouse ) , to manipulate objects ( for augmented
or virtual reality ) , to reinforce speech in a noisy en-
vironment or to communicate with a computer. The
use of hand gestures can be the most natural and in-
tuitive human-machine interaction medium. The ear-
ly approaches for hand gesture recognition used de-
vice-based methods. These methods use mechanical
or optical sensors attached to a glove or markers that
transform hand motions to electrical signals, to de-

termine posture. Using these methods, one can ac-
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quire different information namely, angles, joints of
the hand, and so on. However, these methods re-
quire that the person is wearing a device, which can
be bulky and heavy, and hinders the natural interac-
tion. On the other hand, vision-based methods are
less restrictive and allow for a more natural commu-
nication without the need for an intermediary be-
tween human and machine. Therefore, vision gesture
recognition has been a popular area of research for
the past thirty years and, thanks to the success a-
chieved in the field of artificial intelligence ( deep
learning, cognitive computing and multi-modal ges-
ture recognition in particular) , several gesture rec-

ognition applications have been developed: sign lan-
1-2]

guage recognition- ', virtual reality ( where the
hand is used to manipulate virtual objects and trigger
actions, or navigate in a virtual environment ) - |
augmented reality ( where the physical world is aug-
mented with virtual information, for example by
back-projection ) '*) | multi-modal human-computer
interface ( which involves combination of gesture and
speech recognition) *’ | biometry ( for example, per-
sonal recognition using hand shape and texture) '
just to name a few. Similar to the voice recognition
technology, gesture recognition is seeing its early
days of real life application in the automotive indus-
try. Choosing a car as an early adoption host for a
new human-machine interaction technology is ideal,
because the vehicle presents a controlled environment
with a subset of possible interactions to test with.
This makes the automotive industry a perfect test bed
for testing gesture recognition in real life.

The automotive gesture recognition market val-
ue is estimated to reach USD 13.6 billion by 2024
according to a research report published in 2019 by
Global Market Insights, Inc.'”.

continue to offer more and more functionalities that

As modern cars

require a growing number of commands, the options
to control those features present important flaws
when it comes to driver vehicle interaction, as they
usually require visual attention of the user. The ap-

plication of gesture recognition to advanced driver

assistance systems allows the driver to use hand ges-
tures to control various features of the car (e.g., in-
fotainment system ), thus reduces distracted driving
risks and improves driving safety. Technology ad-
vances are not limited to driving safety. Many inno-
vations in luxury cars pertain to passenger conven-
ience and comfort. Automated driving is a hot topic
in the car industry, with the automakers racing to be
the first to bring a self-driving vehicle to the market.
Some current Tesla, BMW and forthcoming Audi
models will squeeze themselves into and out of tight
parking spaces remotely without a driver need to be
in the car. In this context, one of America’ s big
three automakers has partnered with the Centre of
Pattern Analysis and Machine Intelligence (CPAMI)
at the University of Waterloo to investigate expan-
ding their product segment through deep learning to
provide an increased driver convenience and comfort
with the particular application of hand gesture recog-
nition for driver-less auto parking. This is an open-
ended request that enables this work to explore a
broad range of deep learning techniques and allows
the goals to best suit the applicability of deep learn-
ing techniques in embedded environments for gesture
recognition. We denote this automotive partner as

"the automaker" in the remainder of the paper.

1.2 Problem Statement

Data released by Mercedes and BMW in 2015
show that while vehicle sizes have increased by up to
25 percent over the last 40 years, in many cases, the
number of garages and parking spaces have remained
constant'® . In modern society, there is an everin-
creasing number of vehicles, and this has led to in-
creasing difficulty to find large-enough spaces in
busy parking lots. Parking can be a stressful endeav-
or, with the challenge of maneuvering into and out
of a parking spot. Hence, drivers are in need of no-
vel ways to park their cars without being behind the
wheel. Being on the outside of the vehicle, the driv-
er has a much better view of the hazards surrounding
his car, hence he can park in tighter spots and it

helps him avoid situations, such as illustrated in Fig.
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1, where his vehicle is boxed in, which might cause
a paint damage while trying to exit the car, or even
put the driver in an embarrassing situation (e.g., ex-

iting through the trunk).

Fig. 1 Driver squeezing himself out of his car parked

in a tight parking space.

Several automakers have tackled this problem in
the late 2016s and have developed some solutions,
yet only few of them are in currently produced vehi-
cles. The proposed systems make use of a mobile ap-
plication on a smart phone to automatically park a
car without a driver'”’ |, where a button on the vehi-
cle display key to activates the remote-controlled

parking feature or a smart watch'""’

that recognizes a
configurable wave gesture and transmit it to the vehi-
cle over wireless connection to trigger the parking
action. All of the above mentioned solutions are de-
vice dependant ( remote key, smart phone, smart
watch). This represents a major drawback for these

systems because of the disadvantages that come

along with the usage of an additional hardware. In
fact, any malfunctioning of the device (e.g., dam-
age caused by water, low battery level) or unfavor-
able conditions (e.g., rainy or snowy weather) will
render the self-parking feature unusable. Additional-
ly, even though the above mentioned systems use a
very common human-machine interaction medium
(e.g., touch screen), it still presents an inconven-
ience to the users as it requires an intermediary medi-
um between them and the car. To overcome the a-
bove mentioned weaknesses of the existent solutions,
the automaker would like to, through this work, in-
vestigate the potential of deep leaning techniques in
developing a multiview vision-based system for real

life vehicle self-parking.

2 End-to-End Multiview Gesture Recogni-
tion: System Architecture

2.1 End-to-End System Overview

The vision-based multiview gesture recognition
for self-parking system consists of two main mod-
ules; person detection and frames extraction mod-
ule, and gesture recognition module. The input
stream is a multiview 360 degree feed, offered by a
six cameras system. The person detection module
performs the detection of all subjects present in the
six frames of video input. The resulted frames are
then passed to a dynamic hand gesture classification

module, which finally decides whether to initiate the
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Fig. 2 End-to-End Multiview Dynamic Hand Gesture Recognition System Overview.
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parking operation or not. The overall architecture of

the end-to-end system is shown in Fig. 2.

2.2 Video Hardware Choice

For capturing 360 degree video frames, many
hardware solutions exist on the market, and our
( e-CAM30
HEXCUTX2) from e-con systems, which consists

choice was the HexCamera
of a multiple camera solution for NVIDIA Jetson
TX1/TX2 developer kit. The setup consists of six
cameras with 3.4MP each and an adaptor board to
interface with the J22 connector on the Jetson. The
camera can stream 720p (HD) and 1080p ( Full
HD) at 30 frames/s in uncompressed YUV422 For-

mat. The camera system is presented in Fig. 3.

Fig. 3 e-CAM30_HEXCUTX2 - Six synchronized full
HD cameras for NVIDIA Jetson TX1/TX2.

2.3  Person Detection and Frame Extraction
Module

This module is the first core component of our
end-to-end system. As mentioned in section 2.1, the
output of the multiview camera is a six frame stream
representing 360 degree view. One of the main chal-
lenges is to adapt the output of the multiview camera
to the hand gesture recognition module, which will
be presented in section 3. The 3D-CNN gesture rec-
ognition module is trained on video frames of size
176x100 where every video consists of one single
subject performing the hand gesture. Given that the
multiview camera output may contain multiple sub-
jects in crowded environments (e.g., parking lot)

the first step that the person detection and frames ex-

traction module performs is the detection of all sub-
jects present in the six frame video input. This mod-
ule detects all the persons present in the 360 camera
view feed, calculates the bounding box coordinates
and finally crops over every 30 frames ( required in-
put length for the gesture recognition module) and
saves separate image files for every subject. Once
this step is complete, the resulted frames are passed
to the gesture classification network to perform the
hand gesture recognition. It is important to note that
the authentication of the car owner is out of the
scope of the present work, which means any subject
performing one of the two gestures relevant to our
system ( Swiping Hand Left and Swiping Hand
Right) would trigger the parking operation. The per-
son detection module uses an underlying object de-
tection library. The present paper evaluates two ob-
ject detection tools that have been released recently
using the convolutional neural networks. Faster R-
CNN and YOLO. We have chosen these tools be-
cause YOLO allows to get the best results on
VOC20072 data and VOC20123 and Faster R-CNN
is one of the most used CNN methods so far. In the
next subsections we will highlight our evaluation de-
tails and also the choice of the object detection li-
brary used in our final system.
2.3.1 Faster R-CNN

The first classifier tested for person detection is
the algorithm created by S.Ren et al. """/ | which re-
lies on a detection made entirely with convolutional

neural networks (Fig. 4) .

classifier

plnpn\% /
Region Proposal Network

Fig. 4 Faster R-CNN:: single, unified network

for object detection.
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- A first convolutional neural network takes as-
the input any image of any size and outputs regions
where the objects to be detected might be.

- The second network takes as the input the re-
gions proposed by the first network and decides
whether they contain the object to be detected.

2.3.2 YOLO: You-Only-Look-Once

The second considered classifier, which is the
final selection, is the algorithm developed by Red-
mon et al. in 2016 "', Shorthand for You-Only-
Look-Once, YOLO is a neural network capable of
detecting what is in an image and its location, in a
single forward pass of the image through the net-
work, which was a shortcoming of previous meth-
ods. It gives the bounding boxes around the detected
objects, and it can detect multiple objects at a time
that was invented with the purpose of being able to
perform real-time inference. This algorithm is based
on two steps that are applied to images of predefined
size when learning (Fig.5) :

- Object detection using a convolutional neural
network (CNN).

- A bounding box on the image where the pre-
dicted class of the object, if it exists (in our case a

person or nothing).

Fig. 5 Real-time object detection with YOLO:

the algorithm model detection as a regression
problem. It divides the image into an even
grid and simultaneously predicts bounding boxes,

confidence in those boxes and class probabilities.

The network first divides the input image into a

grid (13 by 13 cells are used in the present paper).

Each cell is responsible for predicting a fixed amount
of bounding boxes (5 bounding boxes per cell is
used in the present paper). Along with every boun-
ding box prediction, where each box is associated
with a confidence score prediction and a class predic-
tion. The confidence score is a value of how certain
the network is that the predicted bounding box enclo-
ses an object of any kind.
2.3.3 Comparison of the Two Techniques

One of the main differences between YOLO and
Faster R-CNN is the computation time, YOLO al-
lows a detection rate of 37 frames per second for an
image of 445x445x3 while Faster R-CNN allows on-
ly 5 frames per second. Moreover, on the VOC2012
and VOC2007 data sets, YOLO seems to give better
results. For our final implementation, YOLO v3, the
latest version which is extremely fast and accurate,
is used in conjunction with the underlying meaty part
of the network: Darknet (a framework to train neu-
ral networks, it is open source and written in C/CU-
DA and serves as the basis for YOLO). For the pur-
pose of our use case, we limit the object detection in
YOLO v3 to only one class; Person.
2.3.4  Person Detection Workflow on Multiview
Frames

Our six camera video system streams a live vid-
eo feed in the format shown in Fig.6. It consists of

the concatenation of six frames covering a 360 de-

gree view.

Fig. 6 Sample output of the e-con hexcam

six camera video output.

Fig. 7 Example of YOLO v3 real-time person
detection and bounding boxes calculation.

The implemented algorithm continuously cap-

tures 30 frames ( expected sequence length by the
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dymanic hand gesture classification model ) at 12
frames/s and passes them to the YOLO based person
detector. The latter, only looks at the first frame of
the 30 frame input and detects all the persons pres-
ent, calculates the bounding boxes ( example shown
in Fig. 7) and finally crops all the 30 frames based
on the respective boxes coordinates. The cropped
videos are then saved in memory ( Numpy array) to
be passed one at a time to the gesture recognition

module. An example of the cropped videos is shown

Fig. 8 Sample cropped persons images:

Left image shows a detected person performing
the "Swiping Hand Left'" gesture (used as Park
IN trigger). Right image shows a detected person not
performing any hand gesture. Both outputs consist
of 30 frames each and are both passed to the

3D-CNN gesture recognition network.

2.4 Gesture Recognition Module

The hand gesture recognition module represents
the second core component of our end-to-end system
after the person detection module. It encompasses
mainly our dynamic hand gesture classifier whose
details will be presented in section 3. Once the per-
son detection and cropping step is complete and the
output frames (such illustrated in Fig. 8) are extrac-
ted, we resize them to match the dimensions of the
expected input video by the 3D-CNN classifier, in
our case with height x width x frames equal to 176 x
100 x 30. Then, we pass every input ( consisting of
30 frames) to the hand gesture recognition network
for classification. The output of this module can be
one of the three classes: Swiping Hand Left ( Park
IN), Swiping Hand Down (Park OUT) or Doing
Other Things (ignored by the system). Once one of

the relevant classes ( Park IN or Park OUT) is detec-
ted, the algorithm drops the rest of the input cropped

videos and trigger the corresponding parking action.

3 Deep Learning-based Multiclass Hand
Gesture Classifier

Hand gesture recognition can be treated as a
multiclass classification problem that maps an input
video sequence to one of the three classes our model
has learned: C1=Swiping Hand Left (Park In) , C2
=Swiping Hand Down ( Park Out) and C3 =Doing
Other Things. The experimental results presented in
section 3.5 will serve to evaluate the performance of
the proposed gesture model, and to compare it with
the state of the art method applied to this paper’ s
use case. In this section, we present the machine
learning methodology we followed in order to build
the dynamic hand gesture classifier. First, the deep
neural network architecture and the training process
are presented. Then, the different experiments lead-
ing to the tuning of the hand-gesture classification
network are described. Finally, the different test sce-
narios conducted while assessing the classifier as

well as their corresponding results are reported.

3.1 Training Dataset: 20BN-JESTER Dataset
The 20BN-JESTER dataset consists of a large
collection of densely-labeled video sequences taken
by a static camera ( webcam or laptop camera) that
show humans performing predefined hand gestures.
This dataset was collected thanks to a large number
of crowd workers and made available by the German
13]

company TwentyBN[
research. In this database, we find a total of 148092

, free of charge for academic

video sequences. The data was provided as a big ar-
chive containing directories numbered from 1 to
148092. Each folder corresponds to one video clip
('single gesture) and contains JPEG images that were
extracted at 12 frames/s having a height of 100px
and variable widths. The length of sequences differs
from one sequence to another. The dataset groups to-
gether 27 classes that represent the different hand
gestures, namely: Swiping Hand Left, Swiping



82 Hassene Ben AMARA et al: End-to-End Multiview Gesture Recognition for Autonomous Car Parking System

Hand Down, Rolling Hand Forward, Doing Other
Things, No Gestures, and so on. In each class, the
hand gesture is performed by participants who repre-
sent a generalized distribution of gender, age, skin
color, and at different speeds. The latter makes this
dataset one of the largest data collections available to
build a robust deep learning-based gesture classifier.

A study of our dataset revealed that the hand
can produce avast diversity of gestures. However, it
is extremely difficult to recognize all the possible
configurations of the hand from its projection in an
image. Indeed, according to the orientation of the
hand in relation to the camera, some parts of the
hand can be hidden. It is then necessary to consider
an appropriate subset of gestures related to our appli-
cation. For the present paper, the goal is to recog-
nize three dynamic hand gestures for parking in and
parking out actions and also other gestures (inclu-
ding no gesture). The two gestures that we want to
recognize are; Swiping Hand Left (Park In trigger
action) and Swiping Hand Down ( Park Out trigger
action). We considered these two gestures because
they are among the most used in human-human inter-
action, and can be perfectly adapted to a natural
man-car interaction. Furthermore, among other pos-
sible gestures available from 20BN-JESTER dataset,
the high neural discriminability (i.e., decodability)
between the two chosen gestures contributed in giv-
ing us the best model performance during our experi-
ments. Fig. 9 shows a sample of the “Swiping Hand
Left” gesture from 20BN-Jester dataset.

Fig. 9 Sample Swiping Hand Left hand
gesture from 20BN-JESTER dataset.

3.2 Data Preprocessing

Due to the fact that video sequences from
20BN-JESTER dataset have different length ( varia-
ble number of frames), the first step in our data
preparation phase is to sub-sample every video down
to 30 frames. So a 31-frame video and a 45-frame
video will both be reduced to 30 frames, with the
45-frame video essentially being fast-forwarded. The
decision to fix the sequence length to 30 was made
after the inspection of the 20BN-JESTER dataset,
which is mostly composed of videos with a length
that varies from 27 to 46 frames. Also, a data clean-
ing step was performed to limit samples to only vide-
os having a duration greater than the sequence
lengths, therefore discarding all shorter videos (e.
g., 28 frames).

For the context of our work, our model is
trained to classify three gestures; C1=Swiping Hand
Left (Park In), C2 = Swiping Hand Down ( Park
Out) and C3 =Doing Other Things ( which covers
other possible gestures including no gesture ). For
that purpose, we used 20BN-JESTER dataset to ex-
tract a subset of data containing all videos for the
aforementioned three classes. We divided our dataset
into three subsets: training, validation and evalua-
tion, the latter two being generally smaller than the
first. It is through the ratio ( Training: 75% , Valida-
tion: 12.5%, Testing: 12.5%) that we can ensure
the capacity of the model to generalize well and a-
void overfitting. Our training data set consists of
2601 video sequences for the Cl, 2641 videos for
C2 and 8601 videos for C3. The latter class has more
than 3 times the number of video sequence to repre-
sent real life scenarios, as most gestures do not be-
long to the first two classes. The validation dataset
consists of 437 videos for C1, 428 videos for C2,
and 2438 for C3. Finally, to evaluate our model, the
evaluation dataset contains 430 videos for both C1,
C2 and 2437 videos for C3.

There are many machine learning methods in
the literature that work well on temporal classifica-

tion tasks as encountered in our dynamic hand ges-
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tures classifier. After a review of many of these
methods and reported results, we limited our experi-
ments to the following learning algorithms: 3D Con-
volutional Neural Networks and Long-term Recurrent

Convolutional Networks.

3.3 Dynamic Hand Gesture 3D-CNN Classifier

Using supervised convolutional neural network
(CNN) models on image recognition tasks has a-
chieved a dramatic progress. Also, a number of ex-
tensions have been proposed to tackle the challenging
video recognition problem. Based on the work done
by Molchanov et al.""*’ on hand gesture recognition u-
sing 3D Convolutional Neural Networks, we trained
and fine-tuned a variant of 3D-CNN classifier.

Three types of layers are usually used to form a
convolutional network. A 2D-CNN is composed of
convolution layer(s), Pooling layer(s) and finally

fully connected layer(s). The fully connected layer

Q Kernel dimension for all 3D convolution: 3x 3 x 3
Q Kernel dimension for all max-pooling layers: 2 x 2 x 2

Q Nb. of filters are denoted in each 3D convolution box

4 4 L4 4
‘pooling-1 pooling-2 pooling-3

conv-1 conv-2 conv-3 conv-4

Input Videos (30 frames each)

Q Stride for all 3D convolution layers in both spatial and temporal dimensions: 1

conv-5 conv-6

(s) are often used as the network output. Usually, a
convolution layer is followed by an activation func-
tion and then a pooling layer, and this sequence can
be repeated several times up to the fully connected
layer to form a convolution network that is often de-
noted under the CONVNET notation. It is also com-
mon to use more than one fully connected layer be-
fore the output of the network. On the other hand,
3D-CNN applies a third dimensional filter to the
dataset and the filter moves in 3-directions (x,y,z)
to learn the low-level feature representations. Their
output shape is a three dimensional volume space
such as a cube. Our model therefore consists of eight
convolution layers, five layers of max-pooling, two
fully connected layers, and finally a softmax output
layer. Fig. 10 shows the final 3D-CNN architecture
of our gesture model for classifying three different

types of dynamic hand gestures.
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Fig. 10 Our final model architecture: 3D Convolutional Neural Network for dynamic hand gesture Recognition.

To determine the optimal architecture and pa-
rameters of our gesture model ( number of convolu-
tion layers, number of neurons per layer, number of
max-pooling layers, etc.) , many models with differ-
ent configurations have been trained on the dataset
presented in section 3.1. The results obtained from
those experiments have helped us determine the best
model architecture that produced the best perform-
ance for our use case. One of the drawbacks of DNN
is the difficulty to select the network hyper-parame-
ters, which makes the network tuning one of the ma-

jor phases in a connectionist modeling-based ma-

chine learning application. The techniques followed
to tune the 3D-CNN gesture neural network are giv-
en now.

Dropout Selection Dropout is a regularization
technique for neural networks proposed by Srivastava

15]

et al. in their 2014 paper'"’ consisting of randomly
dropping units along with their connections from the
neural network architecture during the training phase.
Hence, avoiding overfitting. Dropout is mainly ap-
plied to connected layers and requires a parameter to
know the number of units to be eliminated at each it-

eration, which is often expressed as the rate of units



84 Hassene Ben AMARA et al: End-to-End Multiview Gesture Recognition for Autonomous Car Parking System

to be conserved. For example, a rate of 10% will e-
liminate 90% of connections. This technique indi-
cates dropping out hidden and visible units of a neu-
ral network, which results in deleting them from the
network along with the outgoing and incoming con-
nections. In Keras, dropout is simply implemented
by randomly selecting nodes to be dropped-out with
a given probability (e.g., 50% ). For our 3D-CNN
model training, a dropout of 50% was used between
the two dense fully connected layers after convolu-
tional and pooling layers.

Early stopping when training a learner with an
iterative method, such as gradient descent, early
stopping consists of a regularization technique that
involves stopping the training of the neural network
when the minimal validation error is achieved (or in
other words validation accuracy starts to decrease).
Thus, preventing the generalization performance
from degrading and falling into overfitting. We use
the validation dataset to determine when to stop the
optimization by monitoring the progress of the calcu-
lated error on that validation data and stopping the
optimization when the error starts to increase. In this
work, and after experimenting with various values,
early stopping method was used with a patience set
to 5, which represents the number of epochs before
the validation loss stops improving.

3.3.1 Optimization Parameters

We used Adam ( adaptive momentum estima-
tion) optimization algorithm which is an extension to
stochastic gradient descent that has recently seen
broader adoption for deep learning applications in
computer vision and natural language processing.
Two parameters are required for Adam optimizer; a-
daptive learning rate and decay.

Adaptive Learning Rate Learning rate is a hy-
per-parameter that controls the step ratio while adjus-
ting the weights of our network with respect to the
loss gradient. The lower the value the slower we step
along the downward slope. While this might be a
good idea (using a low learning rate) in terms of

making sure that we do not get stuck in any local

minima, it could also mean that it will take a long
time to converge, especially if we get stuck on a
plateau region. We denote « as the learning rate. The

following formula shows the relationship;
0
0,: =6,-« a—elj(ﬁl)

If a is too small, gradient descent can be slow.
If « is too large, gradient descent can overshoot and
miss the global minima. It may fail to converge, or
even diverge. In our algorithm, we chose the value
of the learning rate as le-5, which gave us the best
model performance after running many experiments
with various values.

Learning Rate Decay One of the things that
might help speeding up the learning algorithm, is to
slowly reduce the learning rate overtime. This allows
to adjust the learning rate, which is called learning
rate decay. Common learning rate decays include
timebased decay, step decay and exponential decay.
The following formula illustrates how the learning
rate « is updated as the number of epochs increases :

1
*= 1 + decayRate * epochNr %

Whereas the learning rate decay does help
speeding up training, during our experiments, we
noticed that its importance in terms of the hyper-pa-
rameters to be tuned was lower than the learning rate
« that had a huge impact on the model performance
if well tuned. The final decay value used in our
training algorithm was le-6.

3.3.2 Model Training

The purpose of our classification is to decide
whether a video contains one of the two relevant ges-
tures for our use case: Swiping Hand Left ( Parking
in) or Swiping Hand Down ( Parking out). To re-
solve this problem, training the classifier was per-
formed using a subset of labeled RGB images from
20BN-Jester dataset. For the implementation of the
training algorithm, we used Keras, an open source
neural network library written in Python and Tensor-
Flow as the backend. Table 1 gives the specifications

tof the computer that is used for our implementations
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and experimentation. The input to the 3D-CNN net-
work is 30 frames from the training dataset of a given
dynamic hand gesture reshaped to (176x100x3) size.
Table 1 Specifications of the computer used
for implementing, training and testing the

gesture recognition classifiers.

Property Specification
Processor Intel Core i5-6600 CPU @ 3.50 GHz
GPU NVIDIA GeForce GTX 1070/PCle/SSE2
Memory 16 GB
(0N Ubuntu 16.04.5 LTS

We used the back-propagation algorithm to ad-
just the network weights and ReLu as the activation
function, with a batch size of 6 (experimented with
higher values of batch size to speedup training but
rapidly hit the memory limit). Also, a dropout of
0.5 was used between the two fully connected lay-
ers, which helped avoid overfitting. We compute the
validation error ( also known as--aka loss) after each
epoch with an early stopping patience value set to 5,
to stop the training once the validation error stops
decreasing for 5 consecutive epochs. Training our
classifier took ~11 hours and went through a total of
10 epochs. Fig. 10 and Fig. 11 show the loss and ac-
curacy curves for validation and training when the

network is being trained.

Epochs

Fig. 11 Training and validation loss vs training
epochs (3D-CNN).

We based our interpretation of these results on
the following definitions .
- Underfitting ; Refers to a model that can nei-

ther model the training data nor generalize to new

data. In this case, the training and validation losses
are both high and the accuracy is low.

- Overfitting ; An overfit model is one where the
loss on the training set is low and continues to de-
crease, whereas the validation loss decreases to a
point and then begins to increase at the same time
where accuracy begins to degrade.

- Good fit; A good fit model has a good accura-
cy on both training and validation sets. This can be-
diagnosed from the loss curve where the training and
validation losses decrease and stabilize around the
same point.

- Unknown adjustment; The validation loss in
this case continues to decrease until it reaches a low
value, but at the same time that of the training con-

tinues to increase to higher levels.

w— U 3INING BCCUracy

Accuracy

e validation accuracy

o oo

n 1 5 2 2 c e - R a 10

Epochs

Fig. 12 Training and validation accuracy
vs training epochs (3D-CNN).

Our trained 3D-CNN gesture classifier is con-
sidered as a good fit model based on the obtained
loss/accuracy curves. We can see that our model did
not experience a blatant case of overfitting. Valida-
tion loss reached its lowest value of 0.074 at the 5"
epoch where the validation accuracy was at 0.977.
However, training loss continued decreasing to reach
a minimum of 0.039 at the 10" epoch with a training

accuracy of 0. 989.

3.4 Dynamic Hand Gesture Recognition with
LRCN

This model proposed by Donahue in 2016 repre-

sents a Long-term Recurrent Convolutional Network

(LRCN) which combines a deep hierarchical visual

feature extractor ( such as a CNN) with an LSTM
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model that can learn to recognize and synthesize
temporal dynamics for tasks involving sequential da-

[16

ta, visual, linguistic, or otherwise ! The reported
state-of-the art results in this paper on three vision
problems ( activity recognition, image description
and video description) made Long-term Recurrent
Convolutional Network one of the approaches we
considered to solve our problem of dynamic hand
gesture recognition. The steps of the LRCN model
training are detailed in the following subsections.
3.4.1 Model Architecture

CNNs have been proved powerful in image re-
lated tasks like computer vision, image classifica-
tion, and object detection. LSTMs are used in mod-
elling tasks related to sequence-based predictions.
LSTMs are widely used in NLP related tasks like
machine translation, sentence classification and gen-
eration. LRCN, also known as CNN-LSTM model,
was specifically designed for sequence prediction
problems with spatial inputs, like images or videos.
As shown in Fig.13, we trained an LRCN network
on the same gesture dataset used for training our 3D-
CNN model by feeding 30 input frames representing
one hand gesture to a feature extractor layer
(CNN), and combined it with LSTMs to support
the sequence prediction.

Input Visual
Features

Sequence
Learning

Output

Fig. 13 Long-term Recurrent Convolutional
Network (LRCN) architecture.

3.4.2 Model Training

The training of the LRCN classifier was per-
formed wusing the same computer specifications
(GPU, RAM, etc, ) used for training the 3D-CNN
classifier and on the same training/validation dataset.
We used the Adam optimizer with a learning rate of
le-5, decay of le-6 and applied a dropout of 0.5 be-
fore the LSTM layer for dimensionality reduction.
The total duration of the training using a batch size
of 6 was ~36 hours, which is more than 3 times lon-
ger than the training duration of the 3D-CNN classi-
fier due to the much slower training speed of LST-
Ms!' . Tt went through a total of 37 epochs before
the model started to converge. We examined the
training and validation loss curves, shown in Fig. 14
and Fig. 15, when the network was being trained,
and we observed that the validation loss stopped de-
creasing after the 23" epoch to reach a minimum of
0.248 at the 32" epoch and then started increasing a-
gain until the early stopping mechanism triggered to

stop the training, 5 epochs later.
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Fig. 14 Training and validation loss vs
training epochs (LRCN).
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Fig. 15 Training and validation accuracy

vs training epochs (LRCN).
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In comparison with the 3D-CNN classifier train-
ing, a much lower validation loss of 0.074 was
reached in much shorter amount of time. At the same
time, validation accuracy reached a maximum of
0.927 at the 36th epoch compared to 0.977 for 3D-
CNN. Based on the LRCN training data analysis, the
obtained model can be considered as a good fit mod-
el since no remarkable overfitting symptoms are ob-
served. It is still difficult at this stage to draw con-
clusions about the model that allows the best per-
formance on our task of dynamic hand gesture recog-
nition. Therefore, in the following section, we will
present our evaluation results of both models tested

on our evaluation dataset.

3.5 Experimental Results and Discussion

This section is devoted to the presentation of the
experimental results relating to the two models intro-
duced in sections 3.3 and 3.4, namely the 3D-CNN
model and the LRCN model. As mentioned earlier,
one of the most important motivations behind the in-
troduction of these two models is their generalisation
capacity in comparison with other approaches in lit-
erature. The experiments therefore were carried out
on dynamic hand gesture recognition task using our
evaluation dataset. In addition, the experimental re-
sults presented in this section will serve to evaluate
the performances of the two model, and to compare
the proposed 3D-CNN model to the state of the art
on the studied issue.

Table 2 shows the performance of two different
classifiers on each class. The results show that the
3D-CNN classifier is dominating LRCN on the three
classes ( Swiping Hand Left, Swiping Hand Down
and Doing Other Things). The performance of the
two classifiers is similar on the average precision,
especially for the Swiping Hand Left and Swiping
Hand Down classes, than that on recall and F1-
measure. Furthermore, the table shows that while the
LRCN classifier achieved a high precision for Swi-
ping Hand Left and Swiping Hand Down classes that
is comparable to that of the 3D-CNN, we notice that
a relatively poor recall on the same two classes;

which means the LRCN system classifies more sam-
ples into Doing Other Things, hence the high recall
value for the latter class and poor precision. Going
back to our use case in the present project; a gesture
recognition self-parking system, both metrics, preci-
sion and recall, are important; we wish to achieve a
high precision on the Swiping Hand Left (Park In)
and Swiping Hand Down ( Park Out) classes, but
most importantly a high recall value to give a better
user experience to the driver using the system while
avoiding cases where the driver needs to repeat the
hand gesture many times to trigger the parking ac-

tion.

Confusion Matrix for 3D CNN Classifier (ours)

Doing Other Things

Swiping Hand Down

True label

Swiping Hand Left

Predicted label
accuracy=0.9502; misclass=0.0498

Fig. 16 Confusion matrix for 3D-CNN

Gesture Classifier (ours).

Confusion Matrix for LRCN Classifier

Doing Other Things

Swiping Hand Down

True label

Swiping Hand Left

F
& ¥
& & "

Predicted label
accuracy=0.8544; misclass=0.1456

Fig. 17 Confusion matrix for LRCN gesture classifier.

The confusion matrices on the validation setare
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given in Fig. 17. The overall accuracy of the LRCN
classifier is 0. 8544 whereas that of our 3D-CNN
classifier is at 0.9502. The confusion matrix for
LRCN shows clearly that many samples of Swiping
Hand Left and Swiping Hand Down are classified as
Doing Other Things, hence the poor recall noticed
earlier. As expected, the LRCN model performed

poorer than 3D-CNN. A possible explanation is that
the position of the hand in each of the 30 frames will
differ from sample to sample, which leads to feeding
the LSTM with different positions of the hand in the
respective indices of the 30 frames. This could con-
fuse the LSTM , which is reflected in the the number

of false negatives.

Table 2 Per class performance comparison between LRCN and 3D-CNN.

LRCN 3D-CNN (ours)
Class
Precision Recall F1-Measure Precision Recall F1-Measure
Swiping Hand Left (Park In) 0.96 0.83 0.89 0.99 0.93 0.96
Swiping Hand Down ( Park Out) 0.94 0.80 0.86 0.99 0.93 0.96
Doing Other Things 0.73 0.94 0.82 0.88 0.99 0.93
Average 0.88 0.85 0.86 0.95 0.95 0.95

3.6 Transfer Learning and Final Model Fine-
tuning

One of the big challenges in machine learning
applications is that training data can be slightly dif-
ferent from the real-world data faced by the algo-
rithm. Hence, the performance of the end-to-end
system, once faced with real data, may not be at the
desired level. We noticed that the trained 3D-CNN
classifier did not perform well when tested live. Two
main factors had a major impact on the performance
of our system;

- Driver To Camera Distance: The closer the
driver is to the multiview camera, the higher is the
accuracy of the system. A camera distance within a
range of [ 60cm, 110cm ] produced the best per-
formance., whereas, in the real-world scenario, the
car driver would have a distance of at least 2 meters
from the car to trigger the auto parking.

- Height of the Multiview Camera System: We
noticed also during our end-to-end testing of the sys-
tem that the camera system needs to be at a certain
height (slightly lower than the user) in order to a-
chieve the best system performance and accuracy.
Once we place the multiview camera at the same lev-
el or slightly higher than the user, gesture detection

accuracy starts to degrade.

The previous observations can be explained by
the nature of the 20BN-Jester dataset we used to train
our gesture model. In fact, most of the video sam-
ples in 20BN-Jester dataset are taken using a laptop
or desktop computer webcam placed at a relatively
close distance (50 to 100cm) and slightly lower lev-
el from the user. Hence, the sensitivity of our end
model to those factors. In order to overcome these
limitations, enhance the system performance and end
user experience, we fine-tuned our model using
transfer learning techniques. The following section
describes the contingency steps that were taken to
overcome the aforementioned challenges.

A dataset containing generalized gesture videos
that are relevant to our use case of autonomous park-
ing was not available. Therefore, we collected a sec-
ond dataset in our lab and used data augmentation
techniques to generate more data samples. The crea-
ted dataset consists of a reasonable quantity of videos
where many subjects performed the Swiping Hand
Left and Swiping Hand Down gestures at variable
distance from the camera system and at different set-
up heights. On the background of the user, we
placed a green screen that enabled us to use the
Chroma Keying technique ( aka green screen keying,

used for decades in film studios by placing human
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characters in outerworldly situations without them
having to leave the studio) to create new videos u-
sing parking lot backgrounds, reflecting the real-
world scenario of parking situations, and various
other backgrounds for data augmentation purpose.
Fig. 18 shows the process we followed to generate

the new dataset using Chroma Keying.

Green screen video

\-| Chroma
Keying )

Parking lot background image

Fig. 18 Data generation using Chroma Keying.

The early layers of the 3D-CNN network al-
ready trained with the 20BN-Jester large dataset can
extract generic features, so we used methods that
further tunes a pre-trained model. Given the relative-
ly small dataset (220 videos) compared to the
20BN-Jester dataset, we did only fine-tune the last
layer of our 3D-CNN, which enhanced significantly
the classification performance. The evaluation metric
for live tests was empirical and based on the auto-
maker satisfaction of the performance. After the
dataset augmentation, the automaker reported a

twice as good performance.

4 Deployment on an Embedded Platform

The person detection framework in the present
development has been able to operate in real-time to-
gether with dynamic hand gesture recognition classi-
fier on an NVIDIA Jetson TX2 board. The live infer-
ence software was implemented to run on the Jetson
platform using the GPU-accelerated version of Ten-
sorflow framework. One of the first challenging steps
was the installation of the econ hexcam six cameras

system on the Jetson TX2 board, including setting

up of the drivers, which were only compatible with
an older version of L4T r27v1.0 (the operating sys-
tem of the NVIDIA Jetson board ). Much effort was
required to run that hardware with a newer version of
CUDA and CUDNN libraries, as required by the
person detection and gesture recognition modules.
Once the six cameras system was installed and func-
tional, the next challenge was to run both the person
detection module, which includes loading the Dark-
net model (object detection network) and YOLOv3
network configuration, and our 3D-CNN hand ges-
ture recognition model. Due to the limited available
RAM on the Jetson board (8GB), we faced many
issues in running the end-to-end system where the
GPU was running out of memory while loading the
3D-CNN model (1.1GB) into memory. To over-
come these issues, the following optimization tech-
niques were applied ;

- Optimize model saving: Keras offers different
model saving methods. The most common method,
which we used during our initial test, is model. save
(). This method saves the architecture of the model
allowing to re-create it, the weights of the model, as
well as the training configuration (loss, optimizer)
and the state of the optimizer. This resulted in a
heavy model of 1.1GB. To significantly reduce the
memory footprint of the 3D-CNN model, we used
model.to_json() to make a JSON string of the archi-
tecture and save it, and model. save _weights () to
make a separate file containing the weights. The re-
sulted files were considerably smaller at 379.2MB,
which is about third the size of the full model. save
() result.

- Use Half-precision floating-point format ( aka
FP16) . This consists of setting the format to 16-bit
to represent the network weights, as opposed to the
standard 32-bit floating point, or FP32. This allowed
us to reduce the memory by cutting the size of our
tensors in half without sacrificing the accuracy of the
model.

- Tune Tensorflow GPU configuration: By de-

fault, TensorFlow maps nearly all of the GPU mem-
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ory of all GPUs visible to the process. This is done
to more efficiently use the relatively precious GPU
memory resources on the devices by reducing memo-
ry fragmentation. On way to optimize memory allo-
cation, is to limit the percentage of the overall size
of memory that Tensorflow process can allocate. In
our case, we set that limit to 25% , which reduced
significantly the initial memory allocation require-
ments.

The present paper’ s use case is a multiview
hand gesture recognition system for autonomous car

parking; therefore, we mounted the Jetson TX2

W tIEB P PR

board on a tripod at a height comparable to a mid-
size car roof height ( ~180cm) as shown in Fig. 19.
Mounting our system on a vehicle was out of the
scope of the present project. Hence, we created an
animated web application that our demo application
triggers via HTTP requests based on the output of the
inference program. The processing time for the end-
to-end inference ( person detection + hand gesture
classification) was on average ~ 2 seconds. The
main portion of that latency comes from the person
detection and cropping part. The gesture recognition

took less than 1 second during our tests.

Fig. 19 A snapshot of the experimental results from a live demo.

5 Conclusion

The present paper proposed a vision-based mul-
tiview dynamic hand gesture recognition system and
its application to vehicle self-parking. In an effort to
develop the next generation of vehicle self-parking
feature, we partnered with one of America’ s big
three automakers to prototype a robust end-to-end
system that operates in real world environment. Our
main motivation for this paper was to eliminate the
intermediate medium between the car and the driver
to offer a friendly user interface for the self-park fea-
ture. To achieve the aforementioned attribute, we

solely relied on a vision-based gesture recognition

solution. The most comprehensive available database
to train a dynamic hand gesture recognition classifier
was 20BN-JESTER "',
oped feature had two commands, represented by two

For simplicity, the devel-

"

hand gestures " swiping hand left" and " swiping

hand down". Hence, we filter the comprehensive "
20BN-Jester" dataset to only two classes with an ad-
ditional " doing other things" class, which was re-
presented by a randomly selected non-command
hand gestures.

As a first step to recognizing the hand gesture,
the solution required a person detection algorithm at
the front of the pipeline. We researched multiple al-
ternatives and selected the best performing model, in

this case, YOLO. YOLO, paired with a six-camera-
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based sensor offered a pre-processing module that
detected and identified all instances of " persons" in
the 360 view of the vehicle. Each of the identified
objects ( person present within the vehicle field of
view ) , was then processed by a 3D-CNN classifier.
The latter was a multi-class classification, which
mapped the first hand gesture ( swiping hand left) to
the part-in command and the second hand gesture
(swiping hand down) to the park-out command. A
third class ( garbage model) was necessary to cap-
ture any gesture that did not fall in the aforemen-
tioned buckets. We achieved an accuracy of 95.02%
with the selected 3D-CNN, while alternatives such
as LRCN, performed at a maximum accuracy of 85.
44% . The reported results were based on experiments
ran in a laboratory environment. Once tested in a real
world setting, we noticed a significant drop in accu-
racy, due to the varying distance and height of the
user with respect to the camera. This was expected,
as all of the training dataset consisted of laptop/web-
cam collected videos which implied a limited range
of distance and height of the person performing the
gesture. To overcome this limitation of our training
data, we decided to leverage transfer learning and
collect custom made data that would generalize our
model on different backgrounds, distances and
heights of the classified subject.

This end-to-end solution was developed as the
vehicle for a host. Hence, multiple optimization
techniques were applied to ensure the resulting model
would operate in real-time on an embedded platform
(NVIDIA Jetson TX2) . less than 2 sec of process-
ing for one hand gesture command, which was con-
sidered as a successful real-time implementation.

Future work will address some of the shortcom-
ings of the proposed solution and how it can be ex-
panded to cover more use cases. In order to over-
come the limitation of training data with regard to
varying distances and heights, one approach would
be to add a pre-processing step that uses the body
skeleton to locate the hand and then zoom in/out the
camera or the 3D object according to how far the

subject performing the hand gesture is. This would

enhance the gesture classifier robustness while ren-
dering the data augmentation step an additional en-
hancement.

The LRCN classifier performed poorly on the
training dataset due to the different hand position in
each of the 30 frames from sample to sample, which
led to feeding the LSTM with different positions of
the hand in the respective indices of the 30 frames.
We proposed to normalize the full hand gesture over
the 30 frames instead of normalizing the sequence
(video) . This would require an additional module to
detect the start and end of the gesture in the video
sequence.

As the vehicle for a host, a cost-effective alter-
native to our embedded gesture recognizer could
make use of cloud deployed centralized gesture clas-
sifier. In this case, the vehicle would make an online
prediction request, assuming that the car is Internet-
connected. The next step towards a market-ready so-
lution, would be the deployment of our system on a
vehicle. Using technologies like Bluetooth proximity
and key fob smartphone app, a future optimization
could reduce the person detection overhead, espe-
cially in crowded environments, by orienting the
camera focus towards the car owner’ s direction,
thereby significantly reducing the input size of the

gesture classifier.
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