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Abstract ;. In this research work, a hierarchical controller has been designed for an autonomous navigation robot to avoid unexpect-

ed moving obstacles where the state and action spaces are continuous. The proposed scheme consists of two parts: 1) a controller

with a high-level approximate reinforcement learning ( ARL) technique for choosing an optimal trajectory in autonomous naviga-

tion; and 2) a low-level, appearance-based visual servoing (ABVS) controller which controls and execute the motion of the ro-

bot. A novel approach for path planning and visual servoing has been proposed by the combined system framework. The character-

istics of the on-board camera which is equipped on the robot is naturally suitable for conducting the reinforcement learning algo-

rithm. Regarding the ARL controller, the computational overhead is quite low thanks to the fact that a knowledge of obstacle mo-

tion is not necessary. The developed scheme has been implemented and validated in a simulation system of obstacle avoidance. It

is noted that findings of the proposed method are successfully verified by obtaining an optimal robotic plan motion strategy.
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1 Introduction

In the past decade, autonomous navigation in
dynamic and unknown environments has been exten-
sively studied by many researchers. It is widely
known that obstacle avoidance is an essential and im-
portant task in robotic navigation . Typically, the ro-
bot control system generates a collision-free trajecto-
ry and drives the robot to the goal location "', Colli-
sions might also be prevented by decelerating or ac-
celerating, on encountering a moving obstacle ">

Practically, the methodologies of obstacle a-
voidance in autonomous navigation can either be cat-
egorized as; model-free or model-based, which de-
pends on whether the scheme considers a model of
the work environment or not. A model-based naviga-
tion scheme requires pre-defined information of the

environment and obstacles. Reference "* developed a

model-based vision system with retroactive position
correction. Normally, a common characteristic of the
existing methods is to adopt a three-dimensional
(3D) model of the environment, which includes el-
ements such as walls and doors, or the geometry of
the path. In this research work, however, a model-
free scheme is developed. And a generalized frame-
work for obstacle avoidance is also proposed, which
is appropriate and efficient for real-time autonomous
navigation. Particularly, a model of the obstacle be-
havior or environment is not required by the devel-
oped method.

References [ 4] and [ 5] used model-free meth-
ods called deep reinforcement learning schemes to
solve navigation problems. However, the system
lacks a moving obstacle policy. The method of visual
servo control in this research work relies on appear-
ance-based navigation, which is mainly inspired by
the work of [6] and [ 7]. However, their method
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also did not take into account moving obstacles. Fur-
thermore, continuous control and related optimiza-
tion problem were not considered explicitly. Unlike
their method, the proposed scheme utilizes the con-
cept of appearance-based visual servo control and de-
velops a new system framework that is effective for
both indoor and outdoor scenarios. In particular, the
view from the visual system is utilized to detect mov-
ing obstacles, and a new constraint called dangerous
area is incorporated into the approximate reinforce-
ment learning scheme to plan optimal trajectories.
The contributions of this research work are pres-
ented below. Through the simulation results, it is
found that, obstacle avoidance in autonomous robot
navigation, through the use of approximate reinforce-
ment learning, the scheme of obstacle avoidance is
suitable for dealing with optimal trajectory planning
and control with continuous state and action space.
This present paper is organized as follows. Sec-
tion I presents the problem definition. Section III
demonstrates the system model and frame projection
model. Section IV introduces approximate reinforce-
ment learning and its application in the present prob-
lem. Simulation results are shown and discussed in

Section V. Section VI concludes the research work.
2 Problem formulation

2.1 Description of the problem

This research work aims toaddress the problem
of obstacle avoidance for an autonomous navigation
robot, in which an initial global trajectory is given.
Following the initial trajectory, it is possible that the
robot might encounter unknown obstacles when ini-
tializing its path. In such scenarios, it is of great sig-
nificance for the robot to be capable of avoiding ini-
tially unknown obstacles that might suddenly appear
during navigation. Thus, a scheme is necessary to
recalculate the local trajectory that deviates from the
current trajectory, in order to reach the target loca-
tion successfully. Additionally, it is assumed that the
target location (local or global) is always available

for the robot to reach.

2.2 Obstacle representation

It is noted that the scheme proposed in the pres-
ent paper involves direct representation of an obsta-
cle that shows up in the image frame of the on-board
camera, and then the movement of the robot is con-
trolled by using the image information in order to a-
void the obstacle. Consequently, the navigation traj-
ectory is regenerated for leading the robot to the tar-
get location. Refer to Fig.1 (a), first, the danger-
ous area and the safe area need to respectively be
specified in the real field of robot navigation.

Then, the robot will occupy a certain area while
following certain trajectory. The dangerous area may
therefore be specified on this basis, which is denoted
by a shadow area in Fig. 1. During the movement of
the robot, If an obstacle enters this area, collision
may occur. In this regard, the area outside the dan-
gerous area is called the safe area. In order to im-
prove the degree of safety, it is possible to expand
the dangerous area with regard to the possibility of
collision. In addition, these areas in the physical en-
vironment have to be mapped onto the camera im-
age, as shown in Fig. 1(b). Section III will further
discuss the mapping in details. Normally, it would
be sufficient to only map the dangerous area onto the
image, since the remaining area of the image frame
can be considered as the safe area. If an obstacle
shows up in the dangerous area, correspondingly,
the leaning controller will move it out of that area,
ensuring the entire obstacle is in the safe area. See
Fig.2.
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Fig. 1 Specified dangerous and safe areas according to newly
detected obstacles: (a) in real world; (b) in camera image.
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Fig. 2 Obstacle avoidance through image movement,

as the robot moves.

By adopting this approach, there are three ad-
vantages in terms of obstacle avoidance. Firstly, the
safe and dangerous areas can be specified according
to the safety requirements. Secondly, despite the fact
that the camera images are utilized to depict the
method , the proposed scheme can be easily extended
for other types of sensors (e.g., ultrasound). Third-
ly, the designed appearance-based scheme eliminates
the necessity for deriving an obstacle kinematic mod-
el, and also facilitates keeping of obstacles in the ro-
bot’ s field of view. The robot model and the state

mapping model are found in '*’.

2.3 General control scheme

Practically, the relationship between the frame
of the image and the camera could be studied accord-
ing to a modified pinhole camera "'’ (see Fig.3).
Assume that the camera plane is placed at a distance
f (which is the focal length) behind the pinhole,
then the intersection of the image plane and the z ax-
is is called the principal point. The image reversal

problem can therefore be avoided.
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Fig. 3 Modified pinhole camera model.

If f stands for the focal length of the given cam-

era, while [ x,,y,] represents the coordinate of the
object in the camera frame with respect to the camera
frame, then on the image plane, the corresponding

coordinates of the point are obtained through,

X %,
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where £ = A and z is the depth from the camera
z

to the object.

2.4 Dangerous area definition

This section demonstrates the scheme of separa-
ting different areas in the robot frame, and mapping
them onto the image plane. Intuitively, the closer the

obstacle to the robot, the more dangerous it would
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Fig. 4 Definition of state area and mapping:
(a) In the robot frame; (b) In the image frame.
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be. The dangerous area should surround the robot
and also provide enough space for the robot to move
without the possibility of colliding with obstacles.
When an obstacle gets closer to the dangerous area,
which is detected by the system, the robot will be
controlled in order to avoid it. Fig.4 illustrates this
concept.

In Fig.4 (a), The dangerous area which is
shown as a shadow rectangle, is defined based on
the size of the physical robot operating in the real en-
vironment. The width of the shadow rectangle,
which is denoted as w, equals to the diameter d of
the robot, and the length / equals to 2d. As shown in
Fig.4 (b), within this dangerous area, an extremely
dangerous area could be defined as a stop point for a
robot once an obstacle shows up. In addition, within
the dangerous area, it is noted that the empty area
stands for the safe area in which the obstacles will
not show up. With this definition, obstacle avoid-
ance involves making the goal point move into the
goal position and making the obstacles move out of

dangerous area at the same time.

3 Approximate Reinforcement Learning

in Dynamic Environment

3.1 Approximate Reinforcement
(ARL)

Reinforcement learning'” is a suitable frame-

Learning

work for optimal control with constraints, since the
computation of complex Lagrange multiplier equa-
tion for constraints is not required. Reinforcement
learning utilizes the solution of control constraint by
setting the corresponding scope of action space.
However, classic reinforcement learning requires ex-
act representation of the value function and storing
the distinct return estimates for every state-action
pair (under control scenario, the pair of the state-ac-
tion and Q-function Q(s,a) are chosen as required ).
These are not possible when some of the state varia-
bles have very large (theoretically infinite) number
of possible values. Therefore, it is practical to repre-

sent the Q-function approximately. In the present pa-

per, for avoiding obstacles, a real-time optimal con-
troller with continuous state and action will use ap-
proximate reinforcement learning.

In approximate reinforcement learning, two as-
pects of approximation are considered; representa-
tion and sample-based approximation. The work in
[10] and [11] has proposed some approximators
based on state-dependent basic functions for value
functions and sampling. However, they did not con-
sider dynamic situations. In those methods, if the en-
vironment changes, a converged set of new coeffi-
cients has to be recomputed for the approximtors.
The specific approach in the present paper is based
on those prior methods, but a new framework is

presented to adapt to dynamic environments.

3.2  Approximate representation of the value
function

The value function is a fundamental component
of reinforcement learning, and is based on value iter-
ation or policy iteration. However, the existing ap-
proaches of policy iteration; for example, LSPI,
LSTD " and their variants, are much slower than
the value iteration approaches because of the need
for computing and storing high-order matrices in the
iteration process. In comparison, value iteration only
needs to compute and store a relatively small set of
coefficients. In real-time control, computational
speed is critical, and the present paper uses an ap-
proximate value function based on value iteration
structure, in order to expedite the computations. In
particular, a linearly parameterized approximator is
used for the Q-function.

Parameterized approximation involves mapping
the Q-function space into a parameter space. With an
n-dimensional parameter set, vectorf , the approxi-
mator is represented by the mappingF:R" — Q ,
where R " is the parameter space and Q) is the space
of QO-function. According to this mapping, the ap-

proximate Q-function is denoted by

0(s,a) = [F(6)] (5,a)

where [F(60)] (s,a) represents the Q-function
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Q(s,a) , approximated as 6( s,a) by mapping
F(0) at the pair of state-action (s,a) . Usually line-
ar mapping is preferred in real-time control since that
the theoretical properties of the resulting approximate
reinforcement learning algorithms are less complex.
By employing n basis functions ( BFs) ¢, ,...,¢,:S
x A—R , together with the parameter vector 6 , the

approximate Q-value can be computed as:

F(0)(s,a)= ggol(s,a)ﬁl =¢"(s,a)6

where, ¢(s,a) = [¢,(s,a) ,...,¢,(s,a)]" de-
notes the BFs vector.

Through the mapping F(0) , BFs become the
primitives of the approximate reinforcement learning
problem. The space of the continuous state-action
pair is transferred into the BFs space in which spaces
of the continuous state and action are approximated
by other formations of state and action spaces with
finite and relatively low dimensions. The real Q-
function Q(s,a) is then denoted by the designed BFs
vector and the parameter vector. The objective of
learning is to determine an optimal parameter vector

0" that is able to generate the best approximation

A
Q" (s,a) for the value of Q-function at a

specific (s,a) .
4 Simulation

4.1 Simulation Setting

In this section, the combined controller is ap-
pliedto a simulated mobile robot operating in a dy-
namic environment. Referring to Fig.2, the move-
ment of the camera/robot with respect to the obsta-
cles has an equivalent movement of the obstacles rel-
ative to the camera/robot. The image from the cam-
era is assumed to be fixed and the pixels of the ob-
stacles move with respect to the image. Therefore,
the entire simulation tests the action strategy of the
moving obstacle pixels in the fixed image.

Based on a fixed image size 640 x 480, the
states and actions can be represented as:

Xy Up
s; = , a; =
Yi,i ul),i

where, x,; € [-320,320] ; y,, € [-240,240];
640 and 480 correspond to the width and the height,
respectively, of the image frame; and u,, ; , u, ; €
[ - 10,10] (pixel/second) correspond to the mov-
ing velocities of the feature points ( obstacle pixels)
along the width axis and the height axis of the image
frame. Accordingly, the continuous and discrete ki-

nematics of the feature points may be expressed as:
t

s, =8 * fal.dt , S
0

where , At denotes the discrete time interval. In

=5, + a,At

+1

the present simulation, discrete kinematicss,,, =s, +
a;At is used for the samples, and Az = 1. An integer
setting of Az is suitable in the present case, since the
pixel space is a discrete space while the robot moves
in a continuous world space. In other words, keep-
ing s; as an integer vector helps to increase execution
accuracy for a mobile robot.

In terms of the present simulation, a triangular
fuzzy partition is chosen as the MFs. Nevertheless,
there are other types of MFs that can be used to
guarantee convergence to an optimal result in ap-
proximate Q-iteration, as long as the remaining MFs
take negligible values at the center of the correspond-

ing MF fuzzy setX, .

4.2 Simulation Results

For 640 x 480 image frame, the entire image
space is divided into 20 X 20 fuzzy grid sets for MFs,
and the action space is equalized to 10 values in
[-20, 20]

should be less than one and half times the grid size.

pixel/second. The maximum speed
Otherwise, some states will be overlooked.

Assume that one moving obstacle is just one
point in the image, and that the camera is always a-
ble to detect a moving obstacle that enters the dan-
gerous area. Since the starting position of a moving
obstacle will not affect the learned policy, we will
randomly choose [ -300, -240] as the starting posi-
tion. The control objective is to move the obstacles
to the goal position, which is set as [ 80, -240]. An

optimal policy of real-time control for the entire im-
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age is learned, as shown in Fig. 5.
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Fig. 5 Optimal policy for real-time control.
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Fig. 6 State, action and reward trajectories

according to the optimal policy in Fig.5.

Fig. 5 is obtained by running Algorithm 1 in
MATLAB code on Inter Core i5-3320CPU @ 2.60Hz.
It takes around 700 iterations, corresponding to a-
bout 200 seconds, to converge to the sub-optimal re-
sult (it can be termed an optimal policy, for conven-

ience) with g, =0.01. With the learned optimal pol-

icy, the specific control trajectory for avoiding a
moving obstacle detected at position [0, 0], is
shown in Fig. 6.

From Fig.6, it can be seen that the position of
the obstacle point is moved successfully to the goal
position [ 80, -240]. The corresponding optimal
path in the simulated image frame is shown in Fig. 7.

The optimal path, which is marked by circles in
Fig. 7, shows that the obstacle detected at the start-
ing point exactly knows what the optimal path
means. Compared to the extremely dangerous area,
the dangerous area can be run across the diagonal
path, which is the shortest path in the dangerous are-
a. Then the obstacle enters the extremely dangerous
area where the obstacles should not be allowed to
present. It is seen that the obstacle correctly chooses
to go to the goal position along the side of the ex-

tremely dangerous area.

Dangerous
Area

((\_1— Starting Point
o

D)

Goal Point

DYVDDD

Fig. 7 Optimal path in a simulated image frame.

5 Conclusion

The present research work proposed a hierarchi-
cal controller which aims to avoid randomly moving
obstacles in autonomous navigation of a robot. A
high-level ARL controller was used for obtaining an
optimal plan for navigation. The low-level, appear-
ance-based visual servoing ( ABVS) controller was
used for controlling and executing motion of the ro-
bot. The ABVS controller enabled transferring the
optimal image path to the robot path by directly ex-
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ploiting the optimal policy, which obtains an optimal
plan for robot motion based on the specific environ-
ment. Under a combined system framework of plan-
ning and visual servo control, the use of the learning
ability of a robot in avoiding collision was a novel
feature. Moreover, the presented scheme exploited
the robot on-board camera whose finite field of view
was naturally suitable for conducting the reinforce-
ment learning algorithm. The simulation results
showed that the proposed method successfully con-
verged to an optimal strategy, so that the robot could

also accordingly generate a proper motion plan.
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